MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mertenslem2 Structured version   Visualization version   GIF version

Theorem mertenslem2 14812
Description: Lemma for mertens 14813. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
Assertion
Ref Expression
mertenslem2 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝐴,𝑘,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑇,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦   𝜑,𝑛,𝑠
Allowed substitution hints:   𝜓(𝑠)   𝐴(𝑧,𝑗)   𝐵(𝑘)   𝑇(𝑠)   𝐹(𝑧,𝑘,𝑠)   𝐻(𝑧,𝑗,𝑛,𝑠)

Proof of Theorem mertenslem2
Dummy variables 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11912 . . 3 ℕ = (ℤ‘1)
2 1zzd 11596 . . 3 (𝜑 → 1 ∈ ℤ)
3 mertens.9 . . . . 5 (𝜑𝐸 ∈ ℝ+)
43rphalfcld 12073 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5 nn0uz 11911 . . . . . 6 0 = (ℤ‘0)
6 0zd 11577 . . . . . 6 (𝜑 → 0 ∈ ℤ)
7 eqidd 2757 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
8 mertens.2 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
9 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
109abscld 14370 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrd 2835 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
12 mertens.7 . . . . . 6 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
135, 6, 7, 11, 12isumrecl 14691 . . . . 5 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
149absge0d 14378 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
1514, 8breqtrrd 4828 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
165, 6, 7, 11, 12, 15isumge0 14692 . . . . 5 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
1713, 16ge0p1rpd 12091 . . . 4 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
184, 17rpdivcld 12078 . . 3 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
19 eqidd 2757 . . 3 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) = (seq0( + , 𝐺)‘𝑚))
20 mertens.4 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
21 mertens.5 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
22 mertens.8 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
235, 6, 20, 21, 22isumclim2 14684 . . 3 (𝜑 → seq0( + , 𝐺) ⇝ Σ𝑘 ∈ ℕ0 𝐵)
241, 2, 18, 19, 23climi2 14437 . 2 (𝜑 → ∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
25 eluznn 11947 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠)) → 𝑚 ∈ ℕ)
2620, 21eqeltrd 2835 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
275, 6, 26serf 13019 . . . . . . . . . . . 12 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℂ)
28 nnnn0 11487 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
29 ffvelrn 6516 . . . . . . . . . . . 12 ((seq0( + , 𝐺):ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
3027, 28, 29syl2an 495 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
315, 6, 20, 21, 22isumcl 14687 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3231adantr 472 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3330, 32abssubd 14387 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))))
34 eqid 2756 . . . . . . . . . . . . . 14 (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑚 + 1))
3528adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
36 peano2nn0 11521 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
3735, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ0)
3837nn0zd 11668 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
39 simpll 807 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝜑)
40 eluznn0 11946 . . . . . . . . . . . . . . . 16 (((𝑚 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4137, 40sylan 489 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4239, 41, 20syl2anc 696 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝐺𝑘) = 𝐵)
4339, 41, 21syl2anc 696 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝐵 ∈ ℂ)
4422adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
4526adantlr 753 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
465, 37, 45iserex 14582 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ ))
4744, 46mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ )
4834, 38, 42, 43, 47isumcl 14687 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵 ∈ ℂ)
4930, 48pncan2d 10582 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
5020adantlr 753 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
5121adantlr 753 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
525, 34, 37, 50, 51, 44isumsplit 14767 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
53 nncn 11216 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5453adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
55 ax-1cn 10182 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
56 pncan 10475 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
5754, 55, 56sylancl 697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) − 1) = 𝑚)
5857oveq2d 6825 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (0...((𝑚 + 1) − 1)) = (0...𝑚))
5958sumeq1d 14626 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = Σ𝑘 ∈ (0...𝑚)𝐵)
60 simpl 474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → 𝜑)
61 elfznn0 12622 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...𝑚) → 𝑘 ∈ ℕ0)
6260, 61, 20syl2an 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑚)) → (𝐺𝑘) = 𝐵)
6335, 5syl6eleq 2845 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ (ℤ‘0))
6460, 61, 21syl2an 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑚)) → 𝐵 ∈ ℂ)
6562, 63, 64fsumser 14656 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑚)𝐵 = (seq0( + , 𝐺)‘𝑚))
6659, 65eqtrd 2790 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = (seq0( + , 𝐺)‘𝑚))
6766oveq1d 6824 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6852, 67eqtrd 2790 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6968oveq1d 6824 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)))
7042sumeq2dv 14628 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
7149, 69, 703eqtr4d 2800 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘))
7271fveq2d 6352 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7333, 72eqtrd 2790 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7473breq1d 4810 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7525, 74sylan2 492 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠))) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7675anassrs 683 . . . . . 6 (((𝜑𝑠 ∈ ℕ) ∧ 𝑚 ∈ (ℤ𝑠)) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7776ralbidva 3119 . . . . 5 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
78 oveq1 6816 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
7978fveq2d 6352 . . . . . . . . 9 (𝑚 = 𝑛 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑛 + 1)))
8079sumeq1d 14626 . . . . . . . 8 (𝑚 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
8180fveq2d 6352 . . . . . . 7 (𝑚 = 𝑛 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8281breq1d 4810 . . . . . 6 (𝑚 = 𝑛 → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
8382cbvralv 3306 . . . . 5 (∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
8477, 83syl6bb 276 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
85 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
86 0zd 11577 . . . . . . . . 9 ((𝜑𝜓) → 0 ∈ ℤ)
874adantr 472 . . . . . . . . . . 11 ((𝜑𝜓) → (𝐸 / 2) ∈ ℝ+)
8885simplbi 478 . . . . . . . . . . . . 13 (𝜓𝑠 ∈ ℕ)
8988adantl 473 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑠 ∈ ℕ)
9089nnrpd 12059 . . . . . . . . . . 11 ((𝜑𝜓) → 𝑠 ∈ ℝ+)
9187, 90rpdivcld 12078 . . . . . . . . . 10 ((𝜑𝜓) → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
92 mertens.10 . . . . . . . . . . . . 13 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
93 eqid 2756 . . . . . . . . . . . . . . . . . 18 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
94 elfznn0 12622 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (0...(𝑠 − 1)) → 𝑛 ∈ ℕ0)
9594adantl 473 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝑛 ∈ ℕ0)
96 peano2nn0 11521 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
9795, 96syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℕ0)
9897nn0zd 11668 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℤ)
99 eqidd 2757 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
100 simplll 815 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
101 eluznn0 11946 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
10297, 101sylan 489 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
103100, 102, 26syl2anc 696 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
10422ad2antrr 764 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
105 simpll 807 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝜑)
106105, 26sylan 489 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1075, 97, 106iserex 14582 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
108104, 107mpbid 222 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
10993, 98, 99, 103, 108isumcl 14687 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
110109abscld 14370 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
111 eleq1a 2830 . . . . . . . . . . . . . . . 16 ((abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) → 𝑧 ∈ ℝ))
112110, 111syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) → 𝑧 ∈ ℝ))
113112rexlimdva 3165 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) → 𝑧 ∈ ℝ))
114113abssdv 3813 . . . . . . . . . . . . 13 ((𝜑𝜓) → {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} ⊆ ℝ)
11592, 114syl5eqss 3786 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑇 ⊆ ℝ)
116 fzfid 12962 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (0...(𝑠 − 1)) ∈ Fin)
117 abrexfi 8427 . . . . . . . . . . . . . . 15 ((0...(𝑠 − 1)) ∈ Fin → {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} ∈ Fin)
118116, 117syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜓) → {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} ∈ Fin)
11992, 118syl5eqel 2839 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑇 ∈ Fin)
120 nnm1nn0 11522 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → (𝑠 − 1) ∈ ℕ0)
12189, 120syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝑠 − 1) ∈ ℕ0)
122121, 5syl6eleq 2845 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (𝑠 − 1) ∈ (ℤ‘0))
123 eluzfz1 12537 . . . . . . . . . . . . . . . . 17 ((𝑠 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑠 − 1)))
124122, 123syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 0 ∈ (0...(𝑠 − 1)))
125 nnnn0 11487 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
126125, 20sylan2 492 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = 𝐵)
127126sumeq2dv 14628 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
128127adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
129128fveq2d 6352 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ 𝐵))
130129eqcomd 2762 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
131 oveq1 6816 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 0 → (𝑛 + 1) = (0 + 1))
132 0p1e1 11320 . . . . . . . . . . . . . . . . . . . . . . 23 (0 + 1) = 1
133131, 132syl6eq 2806 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 0 → (𝑛 + 1) = 1)
134133fveq2d 6352 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = (ℤ‘1))
135134, 1syl6eqr 2808 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = ℕ)
136135sumeq1d 14626 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ ℕ (𝐺𝑘))
137136fveq2d 6352 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
138137eqeq2d 2766 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘))))
139138rspcev 3445 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
140124, 130, 139syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
141 fvex 6358 . . . . . . . . . . . . . . . 16 (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ V
142 eqeq1 2760 . . . . . . . . . . . . . . . . 17 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
143142rexbidv 3186 . . . . . . . . . . . . . . . 16 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
144141, 143, 92elab2 3490 . . . . . . . . . . . . . . 15 ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
145140, 144sylibr 224 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇)
146 ne0i 4060 . . . . . . . . . . . . . 14 ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇𝑇 ≠ ∅)
147145, 146syl 17 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑇 ≠ ∅)
148 ltso 10306 . . . . . . . . . . . . . 14 < Or ℝ
149 fisupcl 8536 . . . . . . . . . . . . . 14 (( < Or ℝ ∧ (𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ)) → sup(𝑇, ℝ, < ) ∈ 𝑇)
150148, 149mpan 708 . . . . . . . . . . . . 13 ((𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ) → sup(𝑇, ℝ, < ) ∈ 𝑇)
151119, 147, 115, 150syl3anc 1477 . . . . . . . . . . . 12 ((𝜑𝜓) → sup(𝑇, ℝ, < ) ∈ 𝑇)
152115, 151sseldd 3741 . . . . . . . . . . 11 ((𝜑𝜓) → sup(𝑇, ℝ, < ) ∈ ℝ)
153 0red 10229 . . . . . . . . . . . 12 ((𝜑𝜓) → 0 ∈ ℝ)
154125, 21sylan2 492 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
155 1nn0 11496 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
156155a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
1575, 156, 26iserex 14582 . . . . . . . . . . . . . . . 16 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
15822, 157mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
1591, 2, 126, 154, 158isumcl 14687 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
160159adantr 472 . . . . . . . . . . . . 13 ((𝜑𝜓) → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
161160abscld 14370 . . . . . . . . . . . 12 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ ℝ)
162160absge0d 14378 . . . . . . . . . . . 12 ((𝜑𝜓) → 0 ≤ (abs‘Σ𝑘 ∈ ℕ 𝐵))
163 fimaxre2 11157 . . . . . . . . . . . . . . 15 ((𝑇 ⊆ ℝ ∧ 𝑇 ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)
164115, 119, 163syl2anc 696 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)
165115, 147, 1643jca 1123 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧))
166 suprub 11172 . . . . . . . . . . . . 13 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧) ∧ (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ sup(𝑇, ℝ, < ))
167165, 145, 166syl2anc 696 . . . . . . . . . . . 12 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ sup(𝑇, ℝ, < ))
168153, 161, 152, 162, 167letrd 10382 . . . . . . . . . . 11 ((𝜑𝜓) → 0 ≤ sup(𝑇, ℝ, < ))
169152, 168ge0p1rpd 12091 . . . . . . . . . 10 ((𝜑𝜓) → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ+)
17091, 169rpdivcld 12078 . . . . . . . . 9 ((𝜑𝜓) → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ+)
171 fveq2 6348 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
172 eqid 2756 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))
173 fvex 6358 . . . . . . . . . . 11 (𝐾𝑚) ∈ V
174171, 172, 173fvmpt 6440 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
175174adantl 473 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
176 nn0ex 11486 . . . . . . . . . . . . 13 0 ∈ V
177176mptex 6646 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V
178177a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V)
179 elnn0uz 11914 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ‘0))
180 fveq2 6348 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
181 fvex 6358 . . . . . . . . . . . . . . . 16 (𝐾𝑗) ∈ V
182180, 172, 181fvmpt 6440 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
183182adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
184179, 183sylan2br 494 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
1856, 184seqfeq 13016 . . . . . . . . . . . 12 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) = seq0( + , 𝐾))
186185, 12eqeltrd 2835 . . . . . . . . . . 11 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) ∈ dom ⇝ )
187183, 8eqtrd 2790 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (abs‘𝐴))
188187, 10eqeltrd 2835 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℝ)
189188recnd 10256 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℂ)
1905, 6, 178, 186, 189serf0 14606 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
191190adantr 472 . . . . . . . . 9 ((𝜑𝜓) → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
1925, 86, 170, 175, 191climi0 14438 . . . . . . . 8 ((𝜑𝜓) → ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
193 simplll 815 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝜑)
194 eluznn0 11946 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
195194adantll 752 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
19611, 15absidd 14356 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐾𝑗)) = (𝐾𝑗))
197196ralrimiva 3100 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗))
198 fveq2 6348 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑚 → (𝐾𝑗) = (𝐾𝑚))
199198fveq2d 6352 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (abs‘(𝐾𝑗)) = (abs‘(𝐾𝑚)))
200199, 198eqeq12d 2771 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((abs‘(𝐾𝑗)) = (𝐾𝑗) ↔ (abs‘(𝐾𝑚)) = (𝐾𝑚)))
201200rspccva 3444 . . . . . . . . . . . . . . 15 ((∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗) ∧ 𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
202197, 201sylan 489 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
203193, 195, 202syl2anc 696 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
204203breq1d 4810 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → ((abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
205204ralbidva 3119 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
206171breq1d 4810 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
207206cbvralv 3306 . . . . . . . . . . 11 (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
208205, 207syl6bbr 278 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
209 simpll 807 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → 𝜑)
210 mertens.1 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
211209, 210sylan 489 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
212209, 8sylan 489 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
213209, 9sylan 489 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
214209, 20sylan 489 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
215209, 21sylan 489 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
216 mertens.6 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
217209, 216sylan 489 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
21812ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → seq0( + , 𝐾) ∈ dom ⇝ )
21922ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → seq0( + , 𝐺) ∈ dom ⇝ )
2203ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → 𝐸 ∈ ℝ+)
221207anbi2i 732 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) ↔ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
222221anbi2i 732 . . . . . . . . . . . . . 14 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ↔ (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
223222biimpi 206 . . . . . . . . . . . . 13 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
224223adantll 752 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
225168, 165jca 555 . . . . . . . . . . . . 13 ((𝜑𝜓) → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)))
226225adantr 472 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)))
227211, 212, 213, 214, 215, 217, 218, 219, 220, 92, 85, 224, 226mertenslem1 14811 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
228227expr 644 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
229208, 228sylbid 230 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
230229rexlimdva 3165 . . . . . . . 8 ((𝜑𝜓) → (∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
231192, 230mpd 15 . . . . . . 7 ((𝜑𝜓) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
232231ex 449 . . . . . 6 (𝜑 → (𝜓 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
23385, 232syl5bir 233 . . . . 5 (𝜑 → ((𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
234233expdimp 452 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
23584, 234sylbid 230 . . 3 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
236235rexlimdva 3165 . 2 (𝜑 → (∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
23724, 236mpd 15 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  {cab 2742  wne 2928  wral 3046  wrex 3047  Vcvv 3336  wss 3711  c0 4054   class class class wbr 4800  cmpt 4877   Or wor 5182  dom cdm 5262  wf 6041  cfv 6045  (class class class)co 6809  Fincfn 8117  supcsup 8507  cc 10122  cr 10123  0cc0 10124  1c1 10125   + caddc 10127   · cmul 10129   < clt 10262  cle 10263  cmin 10454   / cdiv 10872  cn 11208  2c2 11258  0cn0 11480  cuz 11875  +crp 12021  ...cfz 12515  seqcseq 12991  abscabs 14169  cli 14410  Σcsu 14611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-inf 8510  df-oi 8576  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-ico 12370  df-fz 12516  df-fzo 12656  df-fl 12783  df-seq 12992  df-exp 13051  df-hash 13308  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-limsup 14397  df-clim 14414  df-rlim 14415  df-sum 14612
This theorem is referenced by:  mertens  14813
  Copyright terms: Public domain W3C validator