MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met1stc Structured version   Visualization version   GIF version

Theorem met1stc 22231
Description: The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met1stc (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1st𝜔)

Proof of Theorem met1stc
Dummy variables 𝑛 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopntop 22150 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
31mopnuni 22151 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
43eleq2d 2689 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝐽))
54biimpar 502 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝐽) → 𝑥𝑋)
6 simpll 789 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
7 simplr 791 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝑥𝑋)
8 nnrp 11786 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
98adantl 482 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
109rpreccld 11826 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
1110rpxrd 11817 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ*)
121blopn 22210 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
136, 7, 11, 12syl3anc 1323 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
14 eqid 2626 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))
1513, 14fmptd 6341 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ⟶𝐽)
16 frn 6012 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ⟶𝐽 → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
1715, 16syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
18 nnex 10971 . . . . . . . . 9 ℕ ∈ V
1918mptex 6441 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ V
2019rnex 7048 . . . . . . 7 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ V
2120elpw 4141 . . . . . 6 (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽 ↔ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
2217, 21sylibr 224 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽)
23 omelon 8488 . . . . . . . . 9 ω ∈ On
24 nnenom 12716 . . . . . . . . . 10 ℕ ≈ ω
2524ensymi 7951 . . . . . . . . 9 ω ≈ ℕ
26 isnumi 8717 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
2723, 25, 26mp2an 707 . . . . . . . 8 ℕ ∈ dom card
28 ovex 6633 . . . . . . . . . 10 (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ V
2928, 14fnmpti 5981 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) Fn ℕ
30 dffn4 6080 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) Fn ℕ ↔ (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))))
3129, 30mpbi 220 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))
32 fodomnum 8825 . . . . . . . 8 (ℕ ∈ dom card → ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ))
3327, 31, 32mp2 9 . . . . . . 7 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ
34 domentr 7960 . . . . . . 7 ((ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ ∧ ℕ ≈ ω) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω)
3533, 24, 34mp2an 707 . . . . . 6 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω
3635a1i 11 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω)
37 simpll 789 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
38 simprl 793 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝑧𝐽)
39 simprr 795 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝑥𝑧)
401mopni2 22203 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝐽𝑥𝑧) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
4137, 38, 39, 40syl3anc 1323 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
42 simp-4l 805 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
43 simp-4r 806 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑥𝑋)
44 simprl 793 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑦 ∈ ℕ)
4544nnrpd 11814 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑦 ∈ ℝ+)
4645rpreccld 11826 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ+)
47 blcntr 22123 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (1 / 𝑦) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)))
4842, 43, 46, 47syl3anc 1323 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)))
4946rpxrd 11817 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ*)
50 simplrl 799 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ+)
5150rpxrd 11817 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ*)
52 nnrecre 11002 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
5352ad2antrl 763 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ)
5450rpred 11816 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ)
55 simprr 795 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) < 𝑟)
5653, 54, 55ltled 10130 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ≤ 𝑟)
57 ssbl 22133 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ ((1 / 𝑦) ∈ ℝ*𝑟 ∈ ℝ*) ∧ (1 / 𝑦) ≤ 𝑟) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ (𝑥(ball‘𝐷)𝑟))
5842, 43, 49, 51, 56, 57syl221anc 1334 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ (𝑥(ball‘𝐷)𝑟))
59 simplrr 800 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
6058, 59sstrd 3598 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)
6148, 60jca 554 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
62 elrp 11778 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
63 nnrecl 11235 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 0 < 𝑟) → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6462, 63sylbi 207 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6564ad2antrl 763 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6661, 65reximddv 3017 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) → ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
6741, 66rexlimddv 3033 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
68 ovex 6633 . . . . . . . . . 10 (𝑥(ball‘𝐷)(1 / 𝑦)) ∈ V
6968a1i 11 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ 𝑦 ∈ ℕ) → (𝑥(ball‘𝐷)(1 / 𝑦)) ∈ V)
70 vex 3194 . . . . . . . . . 10 𝑤 ∈ V
71 oveq2 6613 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (1 / 𝑛) = (1 / 𝑦))
7271oveq2d 6621 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (𝑥(ball‘𝐷)(1 / 𝑛)) = (𝑥(ball‘𝐷)(1 / 𝑦)))
7372cbvmptv 4715 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) = (𝑦 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑦)))
7473elrnmpt 5336 . . . . . . . . . 10 (𝑤 ∈ V → (𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ↔ ∃𝑦 ∈ ℕ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))))
7570, 74mp1i 13 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → (𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ↔ ∃𝑦 ∈ ℕ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))))
76 eleq2 2693 . . . . . . . . . . 11 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → (𝑥𝑤𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦))))
77 sseq1 3610 . . . . . . . . . . 11 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → (𝑤𝑧 ↔ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
7876, 77anbi12d 746 . . . . . . . . . 10 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
7978adantl 482 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
8069, 75, 79rexxfr2d 4848 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧) ↔ ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
8167, 80mpbird 247 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))
8281expr 642 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑧𝐽) → (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
8382ralrimiva 2965 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
84 breq1 4621 . . . . . . 7 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (𝑦 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω))
85 rexeq 3133 . . . . . . . . 9 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
8685imbi2d 330 . . . . . . . 8 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))))
8786ralbidv 2985 . . . . . . 7 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))))
8884, 87anbi12d 746 . . . . . 6 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ((𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))))
8988rspcev 3300 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽 ∧ (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9022, 36, 83, 89syl12anc 1321 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
915, 90syldan 487 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝐽) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9291ralrimiva 2965 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
93 eqid 2626 . . 3 𝐽 = 𝐽
9493is1stc2 21150 . 2 (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
952, 92, 94sylanbrc 697 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1st𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  wrex 2913  Vcvv 3191  wss 3560  𝒫 cpw 4135   cuni 4407   class class class wbr 4618  cmpt 4678  dom cdm 5079  ran crn 5080  Oncon0 5685   Fn wfn 5845  wf 5846  ontowfo 5848  cfv 5850  (class class class)co 6605  ωcom 7013  cen 7897  cdom 7898  cardccrd 8706  cr 9880  0cc0 9881  1c1 9882  *cxr 10018   < clt 10019  cle 10020   / cdiv 10629  cn 10965  +crp 11776  ∞Metcxmt 19645  ballcbl 19647  MetOpencmopn 19650  Topctop 20612  1st𝜔c1stc 21145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-card 8710  df-acn 8713  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-topgen 16020  df-psmet 19652  df-xmet 19653  df-bl 19655  df-mopn 19656  df-top 20616  df-bases 20617  df-topon 20618  df-1stc 21147
This theorem is referenced by:  metelcls  23006  metcnp4  23011  metcn4  23012
  Copyright terms: Public domain W3C validator