MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp3 Structured version   Visualization version   GIF version

Theorem metcnp3 23144
Description: Two ways to express that 𝐹 is continuous at 𝑃 for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnp3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐽,𝑧   𝑦,𝐾,𝑧   𝑦,𝑋,𝑧   𝑦,𝑌,𝑧   𝑦,𝐶,𝑧   𝑦,𝐷,𝑧   𝑦,𝑃,𝑧

Proof of Theorem metcnp3
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . 5 𝐽 = (MetOpen‘𝐶)
21mopntopon 23043 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
323ad2ant1 1129 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 metcn.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
54mopnval 23042 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝐷)))
653ad2ant2 1130 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷)))
74mopntopon 23043 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
873ad2ant2 1130 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐾 ∈ (TopOn‘𝑌))
9 simp3 1134 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝑃𝑋)
103, 6, 8, 9tgcnp 21855 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
11 simpll2 1209 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑌))
12 simplr 767 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑋𝑌)
13 simpll3 1210 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑃𝑋)
1412, 13ffvelrnd 6847 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ 𝑌)
15 simpr 487 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
16 blcntr 23017 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑃) ∈ 𝑌𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))
1711, 14, 15, 16syl3anc 1367 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))
18 rpxr 12392 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
1918adantl 484 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ*)
20 blelrn 23021 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑃) ∈ 𝑌𝑦 ∈ ℝ*) → ((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷))
2111, 14, 19, 20syl3anc 1367 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → ((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷))
22 eleq2 2901 . . . . . . . . . 10 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝐹𝑃) ∈ 𝑢 ↔ (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
23 sseq2 3993 . . . . . . . . . . . 12 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
2423anbi2d 630 . . . . . . . . . . 11 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
2524rexbidv 3297 . . . . . . . . . 10 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
2622, 25imbi12d 347 . . . . . . . . 9 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → (((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) ↔ ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2726rspcv 3618 . . . . . . . 8 (((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2821, 27syl 17 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2917, 28mpid 44 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
30 simpl1 1187 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐶 ∈ (∞Met‘𝑋))
3130ad2antrr 724 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝐶 ∈ (∞Met‘𝑋))
32 simplrr 776 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝑣𝐽)
33 simpr 487 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝑃𝑣)
341mopni2 23097 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑣𝐽𝑃𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣)
3531, 32, 33, 34syl3anc 1367 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣)
36 sstr2 3974 . . . . . . . . . . . 12 ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹𝑣) → ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
37 imass2 5960 . . . . . . . . . . . 12 ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹𝑣))
3836, 37syl11 33 . . . . . . . . . . 11 ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
3938reximdv 3273 . . . . . . . . . 10 ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4035, 39syl5com 31 . . . . . . . . 9 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4140expimpd 456 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4241expr 459 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝑣𝐽 → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
4342rexlimdv 3283 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4429, 43syld 47 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4544ralrimdva 3189 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
46 simpl2 1188 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐷 ∈ (∞Met‘𝑌))
47 blss 23029 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)
48473expib 1118 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢))
4946, 48syl 17 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢))
50 r19.29r 3255 . . . . . . . . . 10 ((∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑦 ∈ ℝ+ (((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
5130ad5ant12 754 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝐶 ∈ (∞Met‘𝑋))
5213ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑃𝑋)
53 rpxr 12392 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
5453ad2antrl 726 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ*)
551blopn 23104 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽)
5651, 52, 54, 55syl3anc 1367 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽)
57 simprl 769 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ+)
58 blcntr 23017 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧))
5951, 52, 57, 58syl3anc 1367 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧))
60 sstr 3975 . . . . . . . . . . . . . . . . 17 (((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
6160ad2ant2l 744 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) ∧ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
6261ancoms 461 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
63 eleq2 2901 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝑃𝑣𝑃 ∈ (𝑃(ball‘𝐶)𝑧)))
64 imaeq2 5920 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝐹𝑣) = (𝐹 “ (𝑃(ball‘𝐶)𝑧)))
6564sseq1d 3998 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢))
6663, 65anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)))
6766rspcev 3623 . . . . . . . . . . . . . . 15 (((𝑃(ball‘𝐶)𝑧) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
6856, 59, 62, 67syl12anc 834 . . . . . . . . . . . . . 14 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
6968expr 459 . . . . . . . . . . . . 13 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7069rexlimdva 3284 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7170expimpd 456 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → ((((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7271rexlimdva 3284 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑦 ∈ ℝ+ (((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7350, 72syl5 34 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7473expd 418 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7549, 74syld 47 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7675com23 86 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7776exp4a 434 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (𝑢 ∈ ran (ball‘𝐷) → ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
7877ralrimdv 3188 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7945, 78impbid 214 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
8079pm5.32da 581 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
8110, 80bitrd 281 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3936  ran crn 5551  cima 5553  wf 6346  cfv 6350  (class class class)co 7150  *cxr 10668  +crp 12383  topGenctg 16705  ∞Metcxmet 20524  ballcbl 20526  MetOpencmopn 20529  TopOnctopon 21512   CnP ccnp 21827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cnp 21830
This theorem is referenced by:  metcnp  23145
  Copyright terms: Public domain W3C validator