MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi3 Structured version   Visualization version   GIF version

Theorem metcnpi3 22274
Description: Epsilon-delta property of a metric space function continuous at 𝑃. A variation of metcnpi2 22273 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnpi3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦

Proof of Theorem metcnpi3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpen‘𝐶)
2 metcn.4 . . 3 𝐾 = (MetOpen‘𝐷)
31, 2metcnpi2 22273 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))
4 rphalfcl 11810 . . . 4 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
54ad2antrl 763 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → (𝑧 / 2) ∈ ℝ+)
6 simplll 797 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐶 ∈ (∞Met‘𝑋))
7 simprr 795 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑦𝑋)
8 simplrl 799 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
9 eqid 2621 . . . . . . . . . . . 12 𝐽 = 𝐽
109cnprcl 20972 . . . . . . . . . . 11 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
118, 10syl 17 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑃 𝐽)
121mopnuni 22169 . . . . . . . . . . 11 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
136, 12syl 17 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑋 = 𝐽)
1411, 13eleqtrrd 2701 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑃𝑋)
15 xmetcl 22059 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝐶𝑃) ∈ ℝ*)
166, 7, 14, 15syl3anc 1323 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑦𝐶𝑃) ∈ ℝ*)
174ad2antrl 763 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) ∈ ℝ+)
1817rpxrd 11825 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) ∈ ℝ*)
19 rpxr 11792 . . . . . . . . 9 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
2019ad2antrl 763 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑧 ∈ ℝ*)
21 rphalflt 11812 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (𝑧 / 2) < 𝑧)
2221ad2antrl 763 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) < 𝑧)
23 xrlelttr 11939 . . . . . . . . . 10 (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) → (((𝑦𝐶𝑃) ≤ (𝑧 / 2) ∧ (𝑧 / 2) < 𝑧) → (𝑦𝐶𝑃) < 𝑧))
2423expcomd 454 . . . . . . . . 9 (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑧 / 2) < 𝑧 → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧)))
2524imp 445 . . . . . . . 8 ((((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝑧 / 2) < 𝑧) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧))
2616, 18, 20, 22, 25syl31anc 1326 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧))
27 simpllr 798 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐷 ∈ (∞Met‘𝑌))
281mopntopon 22167 . . . . . . . . . . . 12 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
296, 28syl 17 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
302mopntopon 22167 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
3127, 30syl 17 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
32 cnpf2 20977 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
3329, 31, 8, 32syl3anc 1323 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐹:𝑋𝑌)
3433, 7ffvelrnd 6321 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝐹𝑦) ∈ 𝑌)
3533, 14ffvelrnd 6321 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝐹𝑃) ∈ 𝑌)
36 xmetcl 22059 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑃) ∈ 𝑌) → ((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*)
3727, 34, 35, 36syl3anc 1323 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → ((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*)
38 simplrr 800 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐴 ∈ ℝ+)
3938rpxrd 11825 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐴 ∈ ℝ*)
40 xrltle 11934 . . . . . . . 8 ((((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*𝐴 ∈ ℝ*) → (((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
4137, 39, 40syl2anc 692 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
4226, 41imim12d 81 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4342anassrs 679 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦𝑋) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4443ralimdva 2957 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4544impr 648 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
46 breq2 4622 . . . . . 6 (𝑥 = (𝑧 / 2) → ((𝑦𝐶𝑃) ≤ 𝑥 ↔ (𝑦𝐶𝑃) ≤ (𝑧 / 2)))
4746imbi1d 331 . . . . 5 (𝑥 = (𝑧 / 2) → (((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴) ↔ ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4847ralbidv 2981 . . . 4 (𝑥 = (𝑧 / 2) → (∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴) ↔ ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4948rspcev 3298 . . 3 (((𝑧 / 2) ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
505, 45, 49syl2anc 692 . 2 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
513, 50rexlimddv 3029 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908   cuni 4407   class class class wbr 4618  wf 5848  cfv 5852  (class class class)co 6610  *cxr 10025   < clt 10026  cle 10027   / cdiv 10636  2c2 11022  +crp 11784  ∞Metcxmt 19663  MetOpencmopn 19668  TopOnctopon 20647   CnP ccnp 20952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-bl 19673  df-mopn 19674  df-top 20631  df-topon 20648  df-bases 20674  df-cnp 20955
This theorem is referenced by:  blocnilem  27529
  Copyright terms: Public domain W3C validator