MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsge Structured version   Visualization version   GIF version

Theorem metdsge 23384
Description: The distance from the point 𝐴 to the set 𝑆 is greater than 𝑅 iff the 𝑅-ball around 𝐴 misses 𝑆. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsge (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem metdsge
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1185 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝐴𝑋)
2 metdscn.f . . . . 5 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
32metdsval 23382 . . . 4 (𝐴𝑋 → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
41, 3syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
54breq2d 5069 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ 𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )))
6 simpll1 1204 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐷 ∈ (∞Met‘𝑋))
71adantr 481 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐴𝑋)
8 simpl2 1184 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑆𝑋)
98sselda 3964 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑤𝑋)
10 xmetcl 22868 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑤𝑋) → (𝐴𝐷𝑤) ∈ ℝ*)
116, 7, 9, 10syl3anc 1363 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝐴𝐷𝑤) ∈ ℝ*)
12 oveq2 7153 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝐷𝑦) = (𝐴𝐷𝑤))
1312cbvmptv 5160 . . . . 5 (𝑦𝑆 ↦ (𝐴𝐷𝑦)) = (𝑤𝑆 ↦ (𝐴𝐷𝑤))
1411, 13fmptd 6870 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑦𝑆 ↦ (𝐴𝐷𝑦)):𝑆⟶ℝ*)
1514frnd 6514 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*)
16 simpr 485 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
17 infxrgelb 12716 . . 3 ((ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1815, 16, 17syl2anc 584 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1916adantr 481 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑅 ∈ ℝ*)
20 elbl2 22927 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝑤𝑋)) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
216, 19, 7, 9, 20syl22anc 834 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
22 xrltnle 10696 . . . . . . 7 (((𝐴𝐷𝑤) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2311, 19, 22syl2anc 584 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2421, 23bitrd 280 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2524con2bid 356 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑅 ≤ (𝐴𝐷𝑤) ↔ ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
2625ralbidva 3193 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤) ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
27 ovex 7178 . . . . 5 (𝐴𝐷𝑤) ∈ V
2827rgenw 3147 . . . 4 𝑤𝑆 (𝐴𝐷𝑤) ∈ V
29 breq2 5061 . . . . 5 (𝑧 = (𝐴𝐷𝑤) → (𝑅𝑧𝑅 ≤ (𝐴𝐷𝑤)))
3013, 29ralrnmptw 6852 . . . 4 (∀𝑤𝑆 (𝐴𝐷𝑤) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤)))
3128, 30ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤))
32 disj 4395 . . 3 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅ ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅))
3326, 31, 323bitr4g 315 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
345, 18, 333bitrd 306 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cin 3932  wss 3933  c0 4288   class class class wbr 5057  cmpt 5137  ran crn 5549  cfv 6348  (class class class)co 7145  infcinf 8893  *cxr 10662   < clt 10663  cle 10664  ∞Metcxmet 20458  ballcbl 20460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-psmet 20465  df-xmet 20466  df-bl 20468
This theorem is referenced by:  metds0  23385  metdstri  23386  metdseq0  23389  lebnumlem3  23494
  Copyright terms: Public domain W3C validator