MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1a Structured version   Visualization version   GIF version

Theorem metnrmlem1a 22400
Description: Lemma for metnrm 22404. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1a ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1a
StepHypRef Expression
1 metnrmlem.4 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
21adantr 479 . . . . 5 ((𝜑𝐴𝑇) → (𝑆𝑇) = ∅)
3 inelcm 3983 . . . . . . . 8 ((𝐴𝑆𝐴𝑇) → (𝑆𝑇) ≠ ∅)
43expcom 449 . . . . . . 7 (𝐴𝑇 → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
54adantl 480 . . . . . 6 ((𝜑𝐴𝑇) → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
65necon2bd 2797 . . . . 5 ((𝜑𝐴𝑇) → ((𝑆𝑇) = ∅ → ¬ 𝐴𝑆))
72, 6mpd 15 . . . 4 ((𝜑𝐴𝑇) → ¬ 𝐴𝑆)
8 eqcom 2616 . . . . . 6 (0 = (𝐹𝐴) ↔ (𝐹𝐴) = 0)
9 metnrmlem.1 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
109adantr 479 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐷 ∈ (∞Met‘𝑋))
11 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
1211adantr 479 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑆 ∈ (Clsd‘𝐽))
13 eqid 2609 . . . . . . . . . 10 𝐽 = 𝐽
1413cldss 20585 . . . . . . . . 9 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
1512, 14syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑆 𝐽)
16 metdscn.j . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
1716mopnuni 21997 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1810, 17syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑋 = 𝐽)
1915, 18sseqtr4d 3604 . . . . . . 7 ((𝜑𝐴𝑇) → 𝑆𝑋)
20 metnrmlem.3 . . . . . . . . . . 11 (𝜑𝑇 ∈ (Clsd‘𝐽))
2120adantr 479 . . . . . . . . . 10 ((𝜑𝐴𝑇) → 𝑇 ∈ (Clsd‘𝐽))
2213cldss 20585 . . . . . . . . . 10 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
2321, 22syl 17 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑇 𝐽)
2423, 18sseqtr4d 3604 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑇𝑋)
25 simpr 475 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝐴𝑇)
2624, 25sseldd 3568 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐴𝑋)
27 metdscn.f . . . . . . . 8 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2827, 16metdseq0 22396 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
2910, 19, 26, 28syl3anc 1317 . . . . . 6 ((𝜑𝐴𝑇) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
308, 29syl5bb 270 . . . . 5 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
31 cldcls 20598 . . . . . . 7 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
3212, 31syl 17 . . . . . 6 ((𝜑𝐴𝑇) → ((cls‘𝐽)‘𝑆) = 𝑆)
3332eleq2d 2672 . . . . 5 ((𝜑𝐴𝑇) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝐴𝑆))
3430, 33bitrd 266 . . . 4 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴𝑆))
357, 34mtbird 313 . . 3 ((𝜑𝐴𝑇) → ¬ 0 = (𝐹𝐴))
3627metdsf 22390 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3710, 19, 36syl2anc 690 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐹:𝑋⟶(0[,]+∞))
3837, 26ffvelrnd 6253 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ (0[,]+∞))
39 elxrge0 12108 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
4039simprbi 478 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
4138, 40syl 17 . . . . 5 ((𝜑𝐴𝑇) → 0 ≤ (𝐹𝐴))
42 0xr 9942 . . . . . 6 0 ∈ ℝ*
4339simplbi 474 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
4438, 43syl 17 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ ℝ*)
45 xrleloe 11812 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4642, 44, 45sylancr 693 . . . . 5 ((𝜑𝐴𝑇) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4741, 46mpbid 220 . . . 4 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
4847ord 390 . . 3 ((𝜑𝐴𝑇) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
4935, 48mt3d 138 . 2 ((𝜑𝐴𝑇) → 0 < (𝐹𝐴))
50 1re 9895 . . . . . 6 1 ∈ ℝ
5150rexri 9948 . . . . 5 1 ∈ ℝ*
52 ifcl 4079 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
5351, 44, 52sylancr 693 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
54 1red 9911 . . . 4 ((𝜑𝐴𝑇) → 1 ∈ ℝ)
55 0lt1 10399 . . . . . 6 0 < 1
56 breq2 4581 . . . . . . 7 (1 = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < 1 ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
57 breq2 4581 . . . . . . 7 ((𝐹𝐴) = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < (𝐹𝐴) ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
5856, 57ifboth 4073 . . . . . 6 ((0 < 1 ∧ 0 < (𝐹𝐴)) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
5955, 49, 58sylancr 693 . . . . 5 ((𝜑𝐴𝑇) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
60 xrltle 11817 . . . . . 6 ((0 ∈ ℝ* ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6142, 53, 60sylancr 693 . . . . 5 ((𝜑𝐴𝑇) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6259, 61mpd 15 . . . 4 ((𝜑𝐴𝑇) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
63 xrmin1 11841 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
6451, 44, 63sylancr 693 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
65 xrrege0 11838 . . . 4 (((if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6653, 54, 62, 64, 65syl22anc 1318 . . 3 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6766, 59elrpd 11701 . 2 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+)
6849, 67jca 552 1 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wne 2779  cin 3538  wss 3539  c0 3873  ifcif 4035   cuni 4366   class class class wbr 4577  cmpt 4637  ran crn 5029  wf 5786  cfv 5790  (class class class)co 6527  infcinf 8207  cr 9791  0cc0 9792  1c1 9793  +∞cpnf 9927  *cxr 9929   < clt 9930  cle 9931  +crp 11664  [,]cicc 12005  ∞Metcxmt 19498  MetOpencmopn 19503  Clsdccld 20572  clsccl 20574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-icc 12009  df-topgen 15873  df-psmet 19505  df-xmet 19506  df-bl 19508  df-mopn 19509  df-top 20463  df-bases 20464  df-topon 20465  df-cld 20575  df-ntr 20576  df-cls 20577
This theorem is referenced by:  metnrmlem2  22402  metnrmlem3  22403
  Copyright terms: Public domain W3C validator