MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem2 Structured version   Visualization version   GIF version

Theorem metnrmlem2 22571
Description: Lemma for metnrm 22573. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
Assertion
Ref Expression
metnrmlem2 (𝜑 → (𝑈𝐽𝑇𝑈))
Distinct variable groups:   𝑥,𝑦,𝑡,𝐷   𝑡,𝐽,𝑦   𝜑,𝑡   𝑡,𝑇,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦   𝑡,𝑋,𝑥,𝑦   𝑡,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑡)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem2
StepHypRef Expression
1 metnrmlem.u . . 3 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
2 metnrmlem.1 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 metdscn.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntop 22155 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ Top)
62adantr 481 . . . . . 6 ((𝜑𝑡𝑇) → 𝐷 ∈ (∞Met‘𝑋))
7 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
8 eqid 2621 . . . . . . . . . 10 𝐽 = 𝐽
98cldss 20743 . . . . . . . . 9 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
107, 9syl 17 . . . . . . . 8 (𝜑𝑇 𝐽)
113mopnuni 22156 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
122, 11syl 17 . . . . . . . 8 (𝜑𝑋 = 𝐽)
1310, 12sseqtr4d 3621 . . . . . . 7 (𝜑𝑇𝑋)
1413sselda 3583 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡𝑋)
15 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
16 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
17 metnrmlem.4 . . . . . . . . . 10 (𝜑 → (𝑆𝑇) = ∅)
1815, 3, 2, 16, 7, 17metnrmlem1a 22569 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
1918simprd 479 . . . . . . . 8 ((𝜑𝑡𝑇) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
2019rphalfcld 11828 . . . . . . 7 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
2120rpxrd 11817 . . . . . 6 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
223blopn 22215 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
236, 14, 21, 22syl3anc 1323 . . . . 5 ((𝜑𝑡𝑇) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
2423ralrimiva 2960 . . . 4 (𝜑 → ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
25 iunopn 20628 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽) → 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
265, 24, 25syl2anc 692 . . 3 (𝜑 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
271, 26syl5eqel 2702 . 2 (𝜑𝑈𝐽)
28 blcntr 22128 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
296, 14, 20, 28syl3anc 1323 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3029snssd 4309 . . . . 5 ((𝜑𝑡𝑇) → {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3130ralrimiva 2960 . . . 4 (𝜑 → ∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
32 ss2iun 4502 . . . 4 (∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) → 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3331, 32syl 17 . . 3 (𝜑 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
34 iunid 4541 . . . 4 𝑡𝑇 {𝑡} = 𝑇
3534eqcomi 2630 . . 3 𝑇 = 𝑡𝑇 {𝑡}
3633, 35, 13sstr4g 3625 . 2 (𝜑𝑇𝑈)
3727, 36jca 554 1 (𝜑 → (𝑈𝐽𝑇𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  cin 3554  wss 3555  c0 3891  ifcif 4058  {csn 4148   cuni 4402   ciun 4485   class class class wbr 4613  cmpt 4673  ran crn 5075  cfv 5847  (class class class)co 6604  infcinf 8291  0cc0 9880  1c1 9881  *cxr 10017   < clt 10018  cle 10019   / cdiv 10628  2c2 11014  +crp 11776  ∞Metcxmt 19650  ballcbl 19652  MetOpencmopn 19655  Topctop 20617  Clsdccld 20730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-cld 20733  df-ntr 20734  df-cls 20735
This theorem is referenced by:  metnrmlem3  22572
  Copyright terms: Public domain W3C validator