Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metreslem Structured version   Visualization version   GIF version

Theorem metreslem 22072
 Description: Lemma for metres 22075. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
metreslem (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))

Proof of Theorem metreslem
StepHypRef Expression
1 resdmres 5587 . 2 (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅))
2 ineq2 3791 . . . 4 (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)))
3 dmres 5382 . . . 4 dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷)
4 inxp 5219 . . . . 5 ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋𝑅) × (𝑋𝑅))
5 incom 3788 . . . . 5 ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))
64, 5eqtr3i 2650 . . . 4 ((𝑋𝑅) × (𝑋𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))
72, 3, 63eqtr4g 2685 . . 3 (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋𝑅) × (𝑋𝑅)))
87reseq2d 5360 . 2 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
91, 8syl5eqr 2674 1 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∩ cin 3559   × cxp 5077  dom cdm 5079   ↾ cres 5081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-dm 5089  df-rn 5090  df-res 5091 This theorem is referenced by:  xmetres  22074  metres  22075
 Copyright terms: Public domain W3C validator