MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metrest Structured version   Visualization version   GIF version

Theorem metrest 22248
Description: Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
Hypotheses
Ref Expression
metrest.1 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))
metrest.3 𝐽 = (MetOpen‘𝐶)
metrest.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metrest ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = 𝐾)

Proof of Theorem metrest
Dummy variables 𝑢 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3816 . . . . . . . . . 10 (𝑢𝑌) ⊆ 𝑢
2 metrest.3 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘𝐶)
32elmopn2 22169 . . . . . . . . . . . 12 (𝐶 ∈ (∞Met‘𝑋) → (𝑢𝐽 ↔ (𝑢𝑋 ∧ ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)))
43simplbda 653 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽) → ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
54adantlr 750 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
6 ssralv 3650 . . . . . . . . . 10 ((𝑢𝑌) ⊆ 𝑢 → (∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢))
71, 5, 6mpsyl 68 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
8 ssrin 3821 . . . . . . . . . . 11 ((𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
98reximi 3006 . . . . . . . . . 10 (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
109ralimi 2947 . . . . . . . . 9 (∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
117, 10syl 17 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
12 inss2 3817 . . . . . . . 8 (𝑢𝑌) ⊆ 𝑌
1311, 12jctil 559 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ((𝑢𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
14 sseq1 3610 . . . . . . . 8 (𝑥 = (𝑢𝑌) → (𝑥𝑌 ↔ (𝑢𝑌) ⊆ 𝑌))
15 sseq2 3611 . . . . . . . . . 10 (𝑥 = (𝑢𝑌) → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1615rexbidv 3046 . . . . . . . . 9 (𝑥 = (𝑢𝑌) → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1716raleqbi1dv 3138 . . . . . . . 8 (𝑥 = (𝑢𝑌) → (∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1814, 17anbi12d 746 . . . . . . 7 (𝑥 = (𝑢𝑌) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) ↔ ((𝑢𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))))
1913, 18syl5ibrcom 237 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → (𝑥 = (𝑢𝑌) → (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
2019rexlimdva 3025 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) → (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
212mopntop 22164 . . . . . . . . 9 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2221ad2antrr 761 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝐽 ∈ Top)
23 ssel2 3582 . . . . . . . . . . . . . 14 ((𝑥𝑌𝑦𝑥) → 𝑦𝑌)
24 ssel2 3582 . . . . . . . . . . . . . . . 16 ((𝑌𝑋𝑦𝑌) → 𝑦𝑋)
25 rpxr 11791 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
262blopn 22224 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑦(ball‘𝐶)𝑟) ∈ 𝐽)
27 eleq1a 2693 . . . . . . . . . . . . . . . . . . . 20 ((𝑦(ball‘𝐶)𝑟) ∈ 𝐽 → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
2826, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
29283expa 1262 . . . . . . . . . . . . . . . . . 18 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3025, 29sylan2 491 . . . . . . . . . . . . . . . . 17 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3130rexlimdva 3025 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3224, 31sylan2 491 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌𝑋𝑦𝑌)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3332anassrs 679 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3423, 33sylan2 491 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌𝑦𝑥)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3534anassrs 679 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3635rexlimdva 3025 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3736adantrd 484 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) → 𝑧𝐽))
3837adantrr 752 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) → 𝑧𝐽))
3938abssdv 3660 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ⊆ 𝐽)
40 uniopn 20630 . . . . . . . 8 ((𝐽 ∈ Top ∧ {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ⊆ 𝐽) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽)
4122, 39, 40syl2anc 692 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽)
42 oveq1 6617 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (𝑦(ball‘𝐶)𝑟) = (𝑢(ball‘𝐶)𝑟))
4342ineq1d 3796 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) = ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌))
4443sseq1d 3616 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4544rexbidv 3046 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4645rspccv 3295 . . . . . . . . . . . . . 14 (∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4746ad2antll 764 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
48 ssel 3581 . . . . . . . . . . . . . . 15 (𝑥𝑌 → (𝑢𝑥𝑢𝑌))
49 ssel 3581 . . . . . . . . . . . . . . . 16 (𝑌𝑋 → (𝑢𝑌𝑢𝑋))
50 blcntr 22137 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))
5150a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))
5251ancld 575 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
53523expa 1262 . . . . . . . . . . . . . . . . . 18 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋) ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
5453reximdva 3012 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋) → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
5554ex 450 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (∞Met‘𝑋) → (𝑢𝑋 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5649, 55sylan9r 689 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑢𝑌 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5748, 56sylan9r 689 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (𝑢𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5857adantrr 752 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5947, 58mpdd 43 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6042eleq2d 2684 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ↔ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))
6144, 60anbi12d 746 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6261rexbidv 3046 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6362rspcev 3298 . . . . . . . . . . . . 13 ((𝑢𝑥 ∧ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
6463ex 450 . . . . . . . . . . . 12 (𝑢𝑥 → (∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
6559, 64sylcom 30 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
66 simprl 793 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥𝑌)
6766sseld 3586 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥𝑢𝑌))
6865, 67jcad 555 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌)))
69 elin 3779 . . . . . . . . . . . . . . 15 (𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ↔ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢𝑌))
70 ssel2 3582 . . . . . . . . . . . . . . 15 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) → 𝑢𝑥)
7169, 70sylan2br 493 . . . . . . . . . . . . . 14 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢𝑌)) → 𝑢𝑥)
7271expr 642 . . . . . . . . . . . . 13 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7372rexlimivw 3023 . . . . . . . . . . . 12 (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7473rexlimivw 3023 . . . . . . . . . . 11 (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7574imp 445 . . . . . . . . . 10 ((∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌) → 𝑢𝑥)
7668, 75impbid1 215 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌)))
77 elin 3779 . . . . . . . . . 10 (𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌) ↔ (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∧ 𝑢𝑌))
78 eluniab 4418 . . . . . . . . . . . 12 (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ↔ ∃𝑧(𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)))
79 ancom 466 . . . . . . . . . . . . . 14 ((𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) ∧ 𝑢𝑧))
80 anass 680 . . . . . . . . . . . . . 14 (((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) ∧ 𝑢𝑧) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
81 r19.41v 3082 . . . . . . . . . . . . . . . 16 (∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8281rexbii 3035 . . . . . . . . . . . . . . 15 (∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
83 r19.41v 3082 . . . . . . . . . . . . . . 15 (∃𝑦𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8482, 83bitr2i 265 . . . . . . . . . . . . . 14 ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8579, 80, 843bitri 286 . . . . . . . . . . . . 13 ((𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8685exbii 1771 . . . . . . . . . . . 12 (∃𝑧(𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
87 ovex 6638 . . . . . . . . . . . . . . . . 17 (𝑦(ball‘𝐶)𝑟) ∈ V
88 ineq1 3790 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑧𝑌) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌))
8988sseq1d 3616 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦(ball‘𝐶)𝑟) → ((𝑧𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
90 eleq2 2687 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑢𝑧𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9189, 90anbi12d 746 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (((𝑧𝑌) ⊆ 𝑥𝑢𝑧) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
9287, 91ceqsexv 3231 . . . . . . . . . . . . . . . 16 (∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9392rexbii 3035 . . . . . . . . . . . . . . 15 (∃𝑟 ∈ ℝ+𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
94 rexcom4 3214 . . . . . . . . . . . . . . 15 (∃𝑟 ∈ ℝ+𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9593, 94bitr3i 266 . . . . . . . . . . . . . 14 (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9695rexbii 3035 . . . . . . . . . . . . 13 (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑦𝑥𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
97 rexcom4 3214 . . . . . . . . . . . . 13 (∃𝑦𝑥𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9896, 97bitr2i 265 . . . . . . . . . . . 12 (∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9978, 86, 983bitri 286 . . . . . . . . . . 11 (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
10099anbi1i 730 . . . . . . . . . 10 ((𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∧ 𝑢𝑌) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌))
10177, 100bitr2i 265 . . . . . . . . 9 ((∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌) ↔ 𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
10276, 101syl6bb 276 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)))
103102eqrdv 2619 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
104 ineq1 3790 . . . . . . . . 9 (𝑢 = {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} → (𝑢𝑌) = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
105104eqeq2d 2631 . . . . . . . 8 (𝑢 = {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} → (𝑥 = (𝑢𝑌) ↔ 𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)))
106105rspcev 3298 . . . . . . 7 (( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)) → ∃𝑢𝐽 𝑥 = (𝑢𝑌))
10741, 103, 106syl2anc 692 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∃𝑢𝐽 𝑥 = (𝑢𝑌))
108107ex 450 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) → ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
10920, 108impbid 202 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
110 simpr 477 . . . . . . . . . . 11 ((𝑌𝑋𝑦𝑌) → 𝑦𝑌)
11124, 110elind 3781 . . . . . . . . . 10 ((𝑌𝑋𝑦𝑌) → 𝑦 ∈ (𝑋𝑌))
112 metrest.1 . . . . . . . . . . . . . . 15 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))
113112blres 22155 . . . . . . . . . . . . . 14 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌))
114113sseq1d 3616 . . . . . . . . . . . . 13 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
1151143expa 1262 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
11625, 115sylan2 491 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
117116rexbidva 3043 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
118111, 117sylan2 491 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌𝑋𝑦𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
119118anassrs 679 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
12023, 119sylan2 491 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌𝑦𝑥)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
121120anassrs 679 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
122121ralbidva 2980 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
123122pm5.32da 672 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
124109, 123bitr4d 271 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
12521adantr 481 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝐽 ∈ Top)
126 id 22 . . . . 5 (𝑌𝑋𝑌𝑋)
1272mopnm 22168 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝑋𝐽)
128 ssexg 4769 . . . . 5 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
129126, 127, 128syl2anr 495 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝑌 ∈ V)
130 elrest 16016 . . . 4 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝑥 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
131125, 129, 130syl2anc 692 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
132 xmetres2 22085 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐶 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
133112, 132syl5eqel 2702 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑌))
134 metrest.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
135134elmopn2 22169 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → (𝑥𝐾 ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
136133, 135syl 17 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥𝐾 ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
137124, 131, 1363bitr4d 300 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ (𝐽t 𝑌) ↔ 𝑥𝐾))
138137eqrdv 2619 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wral 2907  wrex 2908  Vcvv 3189  cin 3558  wss 3559   cuni 4407   × cxp 5077  cres 5081  cfv 5852  (class class class)co 6610  *cxr 10024  +crp 11783  t crest 16009  ∞Metcxmt 19659  ballcbl 19661  MetOpencmopn 19664  Topctop 20626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-n0 11244  df-z 11329  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-rest 16011  df-topgen 16032  df-psmet 19666  df-xmet 19667  df-bl 19669  df-mopn 19670  df-top 20627  df-topon 20644  df-bases 20670
This theorem is referenced by:  ressxms  22249  nrginvrcn  22415  resubmet  22524  tgioo2  22525  metdscn2  22579  divcn  22590  dfii3  22605  cncfcn  22631  cmetss  23032  minveclem4a  23120  ftc1lem6  23721  ulmdvlem3  24073  abelth  24112  cxpcn3  24402  rlimcnp  24605  minvecolem4b  27601  minvecolem4  27603  hhsscms  28003  ftc1cnnc  33143
  Copyright terms: Public domain W3C validator