MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss2lem Structured version   Visualization version   GIF version

Theorem metss2lem 22226
Description: Lemma for metss2 22227. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
metss2.1 (𝜑𝐶 ∈ (Met‘𝑋))
metss2.2 (𝜑𝐷 ∈ (Met‘𝑋))
metss2.3 (𝜑𝑅 ∈ ℝ+)
metss2.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
metss2lem ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑦,𝑅   𝑦,𝑆   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
21ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐷 ∈ (Met‘𝑋))
3 simplrl 799 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑥𝑋)
4 simpr 477 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑦𝑋)
5 metcl 22047 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
62, 3, 4, 5syl3anc 1323 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
7 simplrr 800 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ+)
87rpred 11816 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ)
9 metss2.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
109ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ+)
116, 8, 10ltmuldiv2d 11864 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 ↔ (𝑥𝐷𝑦) < (𝑆 / 𝑅)))
12 metss2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1312anassrs 679 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1413adantlrr 756 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
15 metss2.1 . . . . . . . 8 (𝜑𝐶 ∈ (Met‘𝑋))
1615ad2antrr 761 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐶 ∈ (Met‘𝑋))
17 metcl 22047 . . . . . . 7 ((𝐶 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1816, 3, 4, 17syl3anc 1323 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1910rpred 11816 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ)
2019, 6remulcld 10014 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ)
21 lelttr 10072 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2218, 20, 8, 21syl3anc 1323 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2314, 22mpand 710 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 → (𝑥𝐶𝑦) < 𝑆))
2411, 23sylbird 250 . . 3 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < (𝑆 / 𝑅) → (𝑥𝐶𝑦) < 𝑆))
2524ss2rabdv 3662 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)} ⊆ {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
26 metxmet 22049 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
271, 26syl 17 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2827adantr 481 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐷 ∈ (∞Met‘𝑋))
29 simprl 793 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑥𝑋)
30 simpr 477 . . . . 5 ((𝑥𝑋𝑆 ∈ ℝ+) → 𝑆 ∈ ℝ+)
31 rpdivcl 11800 . . . . 5 ((𝑆 ∈ ℝ+𝑅 ∈ ℝ+) → (𝑆 / 𝑅) ∈ ℝ+)
3230, 9, 31syl2anr 495 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ+)
3332rpxrd 11817 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ*)
34 blval 22101 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑆 / 𝑅) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
3528, 29, 33, 34syl3anc 1323 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
36 metxmet 22049 . . . . 5 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
3715, 36syl 17 . . . 4 (𝜑𝐶 ∈ (∞Met‘𝑋))
3837adantr 481 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
39 rpxr 11784 . . . 4 (𝑆 ∈ ℝ+𝑆 ∈ ℝ*)
4039ad2antll 764 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
41 blval 22101 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑆 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4238, 29, 40, 41syl3anc 1323 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4325, 35, 423sstr4d 3627 1 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2911  wss 3555   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879   · cmul 9885  *cxr 10017   < clt 10018  cle 10019   / cdiv 10628  +crp 11776  ∞Metcxmt 19650  Metcme 19651  ballcbl 19652  MetOpencmopn 19655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-rp 11777  df-xadd 11891  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660
This theorem is referenced by:  metss2  22227  equivcfil  23005  equivcau  23006  equivtotbnd  33206
  Copyright terms: Public domain W3C validator