MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustbl Structured version   Visualization version   GIF version

Theorem metustbl 22284
Description: The "section" image of an entourage at a point 𝑃 always contains a ball (centered on this point). (Contributed by Thierry Arnoux, 8-Dec-2017.)
Assertion
Ref Expression
metustbl ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})))
Distinct variable groups:   𝐷,𝑎   𝑃,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem metustbl
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1059 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝐷 ∈ (PsMet‘𝑋))
2 simp3 1061 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑃𝑋)
3 simpr 477 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → 𝑤𝑉)
4 vex 3189 . . . . . . . 8 𝑤 ∈ V
5 eqid 2621 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) = (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))
65elrnmpt 5334 . . . . . . . 8 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) ↔ ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟))))
74, 6ax-mp 5 . . . . . . 7 (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) ↔ ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
87biimpi 206 . . . . . 6 (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) → ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
98ad2antlr 762 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
10 sseq1 3607 . . . . . . 7 (𝑤 = (𝐷 “ (0[,)𝑟)) → (𝑤𝑉 ↔ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
1110biimpcd 239 . . . . . 6 (𝑤𝑉 → (𝑤 = (𝐷 “ (0[,)𝑟)) → (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
1211reximdv 3010 . . . . 5 (𝑤𝑉 → (∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
133, 9, 12sylc 65 . . . 4 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉)
14 ne0i 3899 . . . . . 6 (𝑃𝑋𝑋 ≠ ∅)
152, 14syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑋 ≠ ∅)
16 simp2 1060 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑉 ∈ (metUnif‘𝐷))
17 metuel 22282 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)))
1817simplbda 653 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑉 ∈ (metUnif‘𝐷)) → ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)
1915, 1, 16, 18syl21anc 1322 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)
2013, 19r19.29a 3071 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉)
21 imass1 5461 . . . . . 6 ((𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))
2221reximi 3005 . . . . 5 (∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ∃𝑟 ∈ ℝ+ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))
23 blval2 22280 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) = ((𝐷 “ (0[,)𝑟)) “ {𝑃}))
2423sseq1d 3613 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
25243expa 1262 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ 𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
2625rexbidva 3042 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ∃𝑟 ∈ ℝ+ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
2722, 26syl5ibr 236 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
2827imp 445 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))
291, 2, 20, 28syl21anc 1322 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))
30 blssexps 22144 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
31303adant2 1078 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → (∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
3229, 31mpbird 247 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  wss 3556  c0 3893  {csn 4150  cmpt 4675   × cxp 5074  ccnv 5075  ran crn 5077  cima 5079  cfv 5849  (class class class)co 6607  0cc0 9883  +crp 11779  [,)cico 12122  PsMetcpsmet 19652  ballcbl 19655  metUnifcmetu 19659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-n0 11240  df-z 11325  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ico 12126  df-psmet 19660  df-bl 19663  df-fbas 19665  df-fg 19666  df-metu 19667
This theorem is referenced by:  psmetutop  22285
  Copyright terms: Public domain W3C validator