MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm1 Structured version   Visualization version   GIF version

Theorem mgm1 17450
Description: The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
Hypothesis
Ref Expression
mgm1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mgm1 (𝐼𝑉𝑀 ∈ Mgm)

Proof of Theorem mgm1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6808 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
2 opex 5073 . . . . . 6 𝐼, 𝐼⟩ ∈ V
3 fvsng 6603 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
42, 3mpan 708 . . . . 5 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
51, 4syl5eq 2798 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
6 snidg 4343 . . . 4 (𝐼𝑉𝐼 ∈ {𝐼})
75, 6eqeltrd 2831 . . 3 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼})
8 oveq1 6812 . . . . . . 7 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
98eleq1d 2816 . . . . . 6 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
109ralbidv 3116 . . . . 5 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
1110ralsng 4354 . . . 4 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
12 oveq2 6813 . . . . . 6 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1312eleq1d 2816 . . . . 5 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
1413ralsng 4354 . . . 4 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
1511, 14bitrd 268 . . 3 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
167, 15mpbird 247 . 2 (𝐼𝑉 → ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼})
17 snex 5049 . . . . 5 {𝐼} ∈ V
18 mgm1.m . . . . . 6 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
1918grpbase 16185 . . . . 5 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
2017, 19ax-mp 5 . . . 4 {𝐼} = (Base‘𝑀)
21 snex 5049 . . . . 5 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
2218grpplusg 16186 . . . . 5 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2321, 22ax-mp 5 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
2420, 23ismgmn0 17437 . . 3 (𝐼 ∈ {𝐼} → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
256, 24syl 17 . 2 (𝐼𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
2616, 25mpbird 247 1 (𝐼𝑉𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  {csn 4313  {cpr 4315  cop 4319  cfv 6041  (class class class)co 6805  ndxcnx 16048  Basecbs 16051  +gcplusg 16135  Mgmcmgm 17433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-plusg 16148  df-mgm 17435
This theorem is referenced by:  sgrp1  17486
  Copyright terms: Public domain W3C validator