MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem1 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem1 17141
Description: Lemma 1 for mgm2nsgrp 17145: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 16990). (Contributed by AV, 27-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
Assertion
Ref Expression
mgm2nsgrplem1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mgm2nsgrplem1
StepHypRef Expression
1 prid1g 4142 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2syl6eleqr 2603 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4143 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2syl6eleqr 2603 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.b . . . 4 (Base‘𝑀) = 𝑆
76eqcomi 2523 . . 3 𝑆 = (Base‘𝑀)
8 mgm2nsgrp.o . . 3 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
9 ne0i 3783 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
109adantr 479 . . 3 ((𝐴𝑆𝐵𝑆) → 𝑆 ≠ ∅)
11 simplr 787 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐵𝑆)
12 simpll 785 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐴𝑆)
137, 8, 10, 11, 12opifismgm 16994 . 2 ((𝐴𝑆𝐵𝑆) → 𝑀 ∈ Mgm)
143, 5, 13syl2an 492 1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1938  wne 2684  c0 3777  ifcif 3939  {cpr 4030  cfv 5689  cmpt2 6427  Basecbs 15600  +gcplusg 15673  Mgmcmgm 16976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-fv 5697  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-1st 6932  df-2nd 6933  df-mgm 16978
This theorem is referenced by:  mgm2nsgrp  17145  mgmnsgrpex  17154
  Copyright terms: Public domain W3C validator