Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmco Structured version   Visualization version   GIF version

Theorem mgmhmco 44061
Description: The composition of magma homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
mgmhmco ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MgmHom 𝑈))

Proof of Theorem mgmhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 44041 . . . 4 (𝐹 ∈ (𝑇 MgmHom 𝑈) → (𝑇 ∈ Mgm ∧ 𝑈 ∈ Mgm))
21simprd 498 . . 3 (𝐹 ∈ (𝑇 MgmHom 𝑈) → 𝑈 ∈ Mgm)
3 mgmhmrcl 44041 . . . 4 (𝐺 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
43simpld 497 . . 3 (𝐺 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm)
52, 4anim12ci 615 . 2 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm))
6 eqid 2821 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
7 eqid 2821 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
86, 7mgmhmf 44044 . . . 4 (𝐹 ∈ (𝑇 MgmHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
9 eqid 2821 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
109, 6mgmhmf 44044 . . . 4 (𝐺 ∈ (𝑆 MgmHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
11 fco 6526 . . . 4 ((𝐹:(Base‘𝑇)⟶(Base‘𝑈) ∧ 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
128, 10, 11syl2an 597 . . 3 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
13 eqid 2821 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
14 eqid 2821 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
159, 13, 14mgmhmlin 44046 . . . . . . . . 9 ((𝐺 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
16153expb 1116 . . . . . . . 8 ((𝐺 ∈ (𝑆 MgmHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1716adantll 712 . . . . . . 7 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1817fveq2d 6669 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))))
19 simpll 765 . . . . . . 7 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐹 ∈ (𝑇 MgmHom 𝑈))
2010ad2antlr 725 . . . . . . . 8 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
21 simprl 769 . . . . . . . 8 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
2220, 21ffvelrnd 6847 . . . . . . 7 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
23 simprr 771 . . . . . . . 8 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
2420, 23ffvelrnd 6847 . . . . . . 7 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑦) ∈ (Base‘𝑇))
25 eqid 2821 . . . . . . . 8 (+g𝑈) = (+g𝑈)
266, 14, 25mgmhmlin 44046 . . . . . . 7 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑦) ∈ (Base‘𝑇)) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2719, 22, 24, 26syl3anc 1367 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2818, 27eqtrd 2856 . . . . 5 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
294adantl 484 . . . . . . 7 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm)
309, 13mgmcl 17849 . . . . . . . 8 ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
31303expb 1116 . . . . . . 7 ((𝑆 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
3229, 31sylan 582 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
33 fvco3 6755 . . . . . 6 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆)) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
3420, 32, 33syl2anc 586 . . . . 5 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
35 fvco3 6755 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3620, 21, 35syl2anc 586 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
37 fvco3 6755 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3820, 23, 37syl2anc 586 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3936, 38oveq12d 7168 . . . . 5 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
4028, 34, 393eqtr4d 2866 . . . 4 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
4140ralrimivva 3191 . . 3 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
4212, 41jca 514 . 2 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦))))
439, 7, 13, 25ismgmhm 44043 . 2 ((𝐹𝐺) ∈ (𝑆 MgmHom 𝑈) ↔ ((𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm) ∧ ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))))
445, 42, 43sylanbrc 585 1 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MgmHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  ccom 5554  wf 6346  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Mgmcmgm 17844   MgmHom cmgmhm 44037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-mgm 17846  df-mgmhm 44039
This theorem is referenced by:  rnghmco  44171
  Copyright terms: Public domain W3C validator