Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmf Structured version   Visualization version   GIF version

Theorem mgmhmf 41569
Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmf.b 𝐵 = (Base‘𝑆)
mgmhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
mgmhmf (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem mgmhmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmf.b . . 3 𝐵 = (Base‘𝑆)
2 mgmhmf.c . . 3 𝐶 = (Base‘𝑇)
3 eqid 2609 . . 3 (+g𝑆) = (+g𝑆)
4 eqid 2609 . . 3 (+g𝑇) = (+g𝑇)
51, 2, 3, 4ismgmhm 41568 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))))
6 simprl 789 . 2 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))) → 𝐹:𝐵𝐶)
75, 6sylbi 205 1 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2895  wf 5786  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  Mgmcmgm 17009   MgmHom cmgmhm 41562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-map 7723  df-mgmhm 41564
This theorem is referenced by:  mgmhmf1o  41572  resmgmhm  41583  resmgmhm2  41584  resmgmhm2b  41585  mgmhmco  41586  mgmhmima  41587  mgmhmeql  41588
  Copyright terms: Public domain W3C validator