Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmima Structured version   Visualization version   GIF version

Theorem mgmhmima 41587
Description: The homomorphic image of a submagma is a submagma. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
mgmhmima ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹𝑋) ∈ (SubMgm‘𝑁))

Proof of Theorem mgmhmima
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5383 . . 3 (𝐹𝑋) ⊆ ran 𝐹
2 eqid 2609 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2609 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
42, 3mgmhmf 41569 . . . . 5 (𝐹 ∈ (𝑀 MgmHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
54adantr 479 . . . 4 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
6 frn 5952 . . . 4 (𝐹:(Base‘𝑀)⟶(Base‘𝑁) → ran 𝐹 ⊆ (Base‘𝑁))
75, 6syl 17 . . 3 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁))
81, 7syl5ss 3578 . 2 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹𝑋) ⊆ (Base‘𝑁))
9 simpll 785 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 ∈ (𝑀 MgmHom 𝑁))
102submgmss 41577 . . . . . . . . . . . 12 (𝑋 ∈ (SubMgm‘𝑀) → 𝑋 ⊆ (Base‘𝑀))
1110adantl 480 . . . . . . . . . . 11 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝑋 ⊆ (Base‘𝑀))
1211adantr 479 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑋 ⊆ (Base‘𝑀))
13 simprl 789 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧𝑋)
1412, 13sseldd 3568 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧 ∈ (Base‘𝑀))
15 simprr 791 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥𝑋)
1612, 15sseldd 3568 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥 ∈ (Base‘𝑀))
17 eqid 2609 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
18 eqid 2609 . . . . . . . . . 10 (+g𝑁) = (+g𝑁)
192, 17, 18mgmhmlin 41571 . . . . . . . . 9 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
209, 14, 16, 19syl3anc 1317 . . . . . . . 8 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
21 ffn 5944 . . . . . . . . . . 11 (𝐹:(Base‘𝑀)⟶(Base‘𝑁) → 𝐹 Fn (Base‘𝑀))
225, 21syl 17 . . . . . . . . . 10 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝐹 Fn (Base‘𝑀))
2322adantr 479 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 Fn (Base‘𝑀))
2417submgmcl 41579 . . . . . . . . . . 11 ((𝑋 ∈ (SubMgm‘𝑀) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
25243expb 1257 . . . . . . . . . 10 ((𝑋 ∈ (SubMgm‘𝑀) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
2625adantll 745 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
27 fnfvima 6378 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧(+g𝑀)𝑥) ∈ 𝑋) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
2823, 12, 26, 27syl3anc 1317 . . . . . . . 8 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
2920, 28eqeltrrd 2688 . . . . . . 7 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
3029anassrs 677 . . . . . 6 ((((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧𝑋) ∧ 𝑥𝑋) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
3130ralrimiva 2948 . . . . 5 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧𝑋) → ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
32 oveq2 6535 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹𝑧)(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
3332eleq1d 2671 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3433ralima 6380 . . . . . . 7 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3522, 11, 34syl2anc 690 . . . . . 6 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3635adantr 479 . . . . 5 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧𝑋) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3731, 36mpbird 245 . . . 4 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧𝑋) → ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
3837ralrimiva 2948 . . 3 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
39 oveq1 6534 . . . . . . 7 (𝑥 = (𝐹𝑧) → (𝑥(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)𝑦))
4039eleq1d 2671 . . . . . 6 (𝑥 = (𝐹𝑧) → ((𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4140ralbidv 2968 . . . . 5 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4241ralima 6380 . . . 4 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4322, 11, 42syl2anc 690 . . 3 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4438, 43mpbird 245 . 2 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))
45 mgmhmrcl 41566 . . . . 5 (𝐹 ∈ (𝑀 MgmHom 𝑁) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm))
4645simprd 477 . . . 4 (𝐹 ∈ (𝑀 MgmHom 𝑁) → 𝑁 ∈ Mgm)
4746adantr 479 . . 3 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝑁 ∈ Mgm)
483, 18issubmgm 41574 . . 3 (𝑁 ∈ Mgm → ((𝐹𝑋) ∈ (SubMgm‘𝑁) ↔ ((𝐹𝑋) ⊆ (Base‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))))
4947, 48syl 17 . 2 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ((𝐹𝑋) ∈ (SubMgm‘𝑁) ↔ ((𝐹𝑋) ⊆ (Base‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))))
508, 44, 49mpbir2and 958 1 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹𝑋) ∈ (SubMgm‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  wss 3539  ran crn 5029  cima 5031   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  Mgmcmgm 17009   MgmHom cmgmhm 41562  SubMgmcsubmgm 41563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mgm 17011  df-mgmhm 41564  df-submgm 41565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator