Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmplusfreseq Structured version   Visualization version   GIF version

Theorem mgmplusfreseq 41544
Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
plusfreseq.1 𝐵 = (Base‘𝑀)
plusfreseq.2 + = (+g𝑀)
plusfreseq.3 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusfreseq ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = )

Proof of Theorem mgmplusfreseq
StepHypRef Expression
1 plusfreseq.1 . . . . 5 𝐵 = (Base‘𝑀)
2 plusfreseq.3 . . . . 5 = (+𝑓𝑀)
31, 2mgmplusf 17022 . . . 4 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
4 frn 5951 . . . 4 ( :(𝐵 × 𝐵)⟶𝐵 → ran 𝐵)
5 ssel 3561 . . . . 5 (ran 𝐵 → (∅ ∈ ran → ∅ ∈ 𝐵))
65nelcon3d 2894 . . . 4 (ran 𝐵 → (∅ ∉ 𝐵 → ∅ ∉ ran ))
73, 4, 63syl 18 . . 3 (𝑀 ∈ Mgm → (∅ ∉ 𝐵 → ∅ ∉ ran ))
87imp 443 . 2 ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ∅ ∉ ran )
9 plusfreseq.2 . . 3 + = (+g𝑀)
101, 9, 2plusfreseq 41543 . 2 (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )
118, 10syl 17 1 ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wnel 2780  wss 3539  c0 3873   × cxp 5025  ran crn 5028  cres 5029  wf 5785  cfv 5789  Basecbs 15643  +gcplusg 15716  +𝑓cplusf 17010  Mgmcmgm 17011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-fv 5797  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-1st 7036  df-2nd 7037  df-plusf 17012  df-mgm 17013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator