Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmpropd Structured version   Visualization version   GIF version

Theorem mgmpropd 41560
Description: If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmpropd.k (𝜑𝐵 = (Base‘𝐾))
mgmpropd.l (𝜑𝐵 = (Base‘𝐿))
mgmpropd.b (𝜑𝐵 ≠ ∅)
mgmpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
mgmpropd (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem mgmpropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpl 471 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝜑)
2 mgmpropd.k . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝐾))
32eqcomd 2615 . . . . . . . . . 10 (𝜑 → (Base‘𝐾) = 𝐵)
43eleq2d 2672 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↔ 𝑥𝐵))
54biimpcd 237 . . . . . . . 8 (𝑥 ∈ (Base‘𝐾) → (𝜑𝑥𝐵))
65adantr 479 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝜑𝑥𝐵))
76impcom 444 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥𝐵)
83eleq2d 2672 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (Base‘𝐾) ↔ 𝑦𝐵))
98biimpd 217 . . . . . . . 8 (𝜑 → (𝑦 ∈ (Base‘𝐾) → 𝑦𝐵))
109adantld 481 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵))
1110imp 443 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦𝐵)
12 mgmpropd.p . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
131, 7, 11, 12syl12anc 1315 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1413eleq1d 2671 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾)))
15142ralbidva 2970 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾)))
16 mgmpropd.l . . . . 5 (𝜑𝐵 = (Base‘𝐿))
172, 16eqtr3d 2645 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
1817eleq2d 2672 . . . . 5 (𝜑 → ((𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
1917, 18raleqbidv 3128 . . . 4 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
2017, 19raleqbidv 3128 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
2115, 20bitrd 266 . 2 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
22 mgmpropd.b . . 3 (𝜑𝐵 ≠ ∅)
23 n0 3889 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑎 𝑎𝐵)
242eleq2d 2672 . . . . . 6 (𝜑 → (𝑎𝐵𝑎 ∈ (Base‘𝐾)))
25 eqid 2609 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
26 eqid 2609 . . . . . . 7 (+g𝐾) = (+g𝐾)
2725, 26ismgmn0 17013 . . . . . 6 (𝑎 ∈ (Base‘𝐾) → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾)))
2824, 27syl6bi 241 . . . . 5 (𝜑 → (𝑎𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
2928exlimdv 1847 . . . 4 (𝜑 → (∃𝑎 𝑎𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
3023, 29syl5bi 230 . . 3 (𝜑 → (𝐵 ≠ ∅ → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
3122, 30mpd 15 . 2 (𝜑 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾)))
3216eleq2d 2672 . . . . . 6 (𝜑 → (𝑎𝐵𝑎 ∈ (Base‘𝐿)))
33 eqid 2609 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
34 eqid 2609 . . . . . . 7 (+g𝐿) = (+g𝐿)
3533, 34ismgmn0 17013 . . . . . 6 (𝑎 ∈ (Base‘𝐿) → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
3632, 35syl6bi 241 . . . . 5 (𝜑 → (𝑎𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3736exlimdv 1847 . . . 4 (𝜑 → (∃𝑎 𝑎𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3823, 37syl5bi 230 . . 3 (𝜑 → (𝐵 ≠ ∅ → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3922, 38mpd 15 . 2 (𝜑 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
4021, 31, 393bitr4d 298 1 (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1976  wne 2779  wral 2895  c0 3873  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  Mgmcmgm 17009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-nul 4712  ax-pow 4764
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-dm 5038  df-iota 5754  df-fv 5798  df-ov 6530  df-mgm 17011
This theorem is referenced by:  mgmhmpropd  41570
  Copyright terms: Public domain W3C validator