MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpress Structured version   Visualization version   GIF version

Theorem mgpress 18421
Description: Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . 3 𝑀 = (mulGrp‘𝑅)
2 simpr 477 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (Base‘𝑅) ⊆ 𝐴)
3 fvex 6158 . . . . . 6 (mulGrp‘𝑅) ∈ V
41, 3eqeltri 2694 . . . . 5 𝑀 ∈ V
54a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
6 simplr 791 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
7 eqid 2621 . . . . 5 (𝑀s 𝐴) = (𝑀s 𝐴)
8 eqid 2621 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
91, 8mgpbas 18416 . . . . 5 (Base‘𝑅) = (Base‘𝑀)
107, 9ressid2 15849 . . . 4 (((Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = 𝑀)
112, 5, 6, 10syl3anc 1323 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = 𝑀)
12 simpll 789 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
13 mgpress.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
1413, 8ressid2 15849 . . . . 5 (((Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = 𝑅)
152, 12, 6, 14syl3anc 1323 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = 𝑅)
1615fveq2d 6152 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = (mulGrp‘𝑅))
171, 11, 163eqtr4a 2681 . 2 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
18 eqid 2621 . . . . 5 (.r𝑅) = (.r𝑅)
191, 18mgpval 18413 . . . 4 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩)
2019oveq1i 6614 . . 3 (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩)
21 simpr 477 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ¬ (Base‘𝑅) ⊆ 𝐴)
224a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
23 simplr 791 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
247, 9ressval2 15850 . . . 4 ((¬ (Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
2521, 22, 23, 24syl3anc 1323 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
26 eqid 2621 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
27 eqid 2621 . . . . . 6 (.r𝑆) = (.r𝑆)
2826, 27mgpval 18413 . . . . 5 (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩)
29 simpll 789 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
3013, 8ressval2 15850 . . . . . . 7 ((¬ (Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3121, 29, 23, 30syl3anc 1323 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3213, 18ressmulr 15927 . . . . . . . . 9 (𝐴𝑊 → (.r𝑅) = (.r𝑆))
3332eqcomd 2627 . . . . . . . 8 (𝐴𝑊 → (.r𝑆) = (.r𝑅))
3433ad2antlr 762 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (.r𝑆) = (.r𝑅))
3534opeq2d 4377 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
3631, 35oveq12d 6622 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
3728, 36syl5eq 2667 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
38 1ne2 11184 . . . . . . 7 1 ≠ 2
3938necomi 2844 . . . . . 6 2 ≠ 1
40 plusgndx 15897 . . . . . . 7 (+g‘ndx) = 2
41 basendx 15844 . . . . . . 7 (Base‘ndx) = 1
4240, 41neeq12i 2856 . . . . . 6 ((+g‘ndx) ≠ (Base‘ndx) ↔ 2 ≠ 1)
4339, 42mpbir 221 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
44 fvex 6158 . . . . . 6 (.r𝑅) ∈ V
45 fvex 6158 . . . . . . 7 (Base‘𝑅) ∈ V
4645inex2 4760 . . . . . 6 (𝐴 ∩ (Base‘𝑅)) ∈ V
47 fvex 6158 . . . . . . 7 (+g‘ndx) ∈ V
48 fvex 6158 . . . . . . 7 (Base‘ndx) ∈ V
4947, 48setscom 15824 . . . . . 6 (((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) ∧ ((.r𝑅) ∈ V ∧ (𝐴 ∩ (Base‘𝑅)) ∈ V)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
5044, 46, 49mpanr12 720 . . . . 5 ((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
5129, 43, 50sylancl 693 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
5237, 51eqtr4d 2658 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
5320, 25, 523eqtr4a 2681 . 2 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
5417, 53pm2.61dan 831 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  cin 3554  wss 3555  cop 4154  cfv 5847  (class class class)co 6604  1c1 9881  2c2 11014  ndxcnx 15778   sSet csts 15779  Basecbs 15781  s cress 15782  +gcplusg 15862  .rcmulr 15863  mulGrpcmgp 18410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-mgp 18411
This theorem is referenced by:  subrgcrng  18705  subrgsubm  18714  resrhm  18730  nn0srg  19735  rge0srg  19736  zringmpg  19759  m2cpmmhm  20469  rdivmuldivd  29573  xrge0iifmhm  29764  xrge0pluscn  29765  xrge0tmd  29771
  Copyright terms: Public domain W3C validator