MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpress Structured version   Visualization version   GIF version

Theorem mgpress 19252
Description: Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . 3 𝑀 = (mulGrp‘𝑅)
2 simpr 487 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (Base‘𝑅) ⊆ 𝐴)
31fvexi 6686 . . . . 5 𝑀 ∈ V
43a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
5 simplr 767 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
6 eqid 2823 . . . . 5 (𝑀s 𝐴) = (𝑀s 𝐴)
7 eqid 2823 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
81, 7mgpbas 19247 . . . . 5 (Base‘𝑅) = (Base‘𝑀)
96, 8ressid2 16554 . . . 4 (((Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = 𝑀)
102, 4, 5, 9syl3anc 1367 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = 𝑀)
11 simpll 765 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
12 mgpress.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
1312, 7ressid2 16554 . . . . 5 (((Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = 𝑅)
142, 11, 5, 13syl3anc 1367 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = 𝑅)
1514fveq2d 6676 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = (mulGrp‘𝑅))
161, 10, 153eqtr4a 2884 . 2 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
17 eqid 2823 . . . . 5 (.r𝑅) = (.r𝑅)
181, 17mgpval 19244 . . . 4 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩)
1918oveq1i 7168 . . 3 (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩)
20 simpr 487 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ¬ (Base‘𝑅) ⊆ 𝐴)
213a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
22 simplr 767 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
236, 8ressval2 16555 . . . 4 ((¬ (Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
2420, 21, 22, 23syl3anc 1367 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
25 eqid 2823 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
26 eqid 2823 . . . . . 6 (.r𝑆) = (.r𝑆)
2725, 26mgpval 19244 . . . . 5 (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩)
28 simpll 765 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
2912, 7ressval2 16555 . . . . . . 7 ((¬ (Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3020, 28, 22, 29syl3anc 1367 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3112, 17ressmulr 16627 . . . . . . . . 9 (𝐴𝑊 → (.r𝑅) = (.r𝑆))
3231eqcomd 2829 . . . . . . . 8 (𝐴𝑊 → (.r𝑆) = (.r𝑅))
3332ad2antlr 725 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (.r𝑆) = (.r𝑅))
3433opeq2d 4812 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
3530, 34oveq12d 7176 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
3627, 35syl5eq 2870 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
37 1ne2 11848 . . . . . . 7 1 ≠ 2
3837necomi 3072 . . . . . 6 2 ≠ 1
39 plusgndx 16597 . . . . . . 7 (+g‘ndx) = 2
40 basendx 16549 . . . . . . 7 (Base‘ndx) = 1
4139, 40neeq12i 3084 . . . . . 6 ((+g‘ndx) ≠ (Base‘ndx) ↔ 2 ≠ 1)
4238, 41mpbir 233 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
43 fvex 6685 . . . . . 6 (.r𝑅) ∈ V
44 fvex 6685 . . . . . . 7 (Base‘𝑅) ∈ V
4544inex2 5224 . . . . . 6 (𝐴 ∩ (Base‘𝑅)) ∈ V
46 fvex 6685 . . . . . . 7 (+g‘ndx) ∈ V
47 fvex 6685 . . . . . . 7 (Base‘ndx) ∈ V
4846, 47setscom 16529 . . . . . 6 (((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) ∧ ((.r𝑅) ∈ V ∧ (𝐴 ∩ (Base‘𝑅)) ∈ V)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4943, 45, 48mpanr12 703 . . . . 5 ((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
5028, 42, 49sylancl 588 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
5136, 50eqtr4d 2861 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
5219, 24, 513eqtr4a 2884 . 2 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
5316, 52pm2.61dan 811 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cin 3937  wss 3938  cop 4575  cfv 6357  (class class class)co 7158  1c1 10540  2c2 11695  ndxcnx 16482   sSet csts 16483  Basecbs 16485  s cress 16486  +gcplusg 16567  .rcmulr 16568  mulGrpcmgp 19241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-mgp 19242
This theorem is referenced by:  subrgcrng  19541  subrgsubm  19550  resrhm  19566  subdrgint  19584  nn0srg  20617  rge0srg  20618  zringmpg  20641  m2cpmmhm  21355  cntrcrng  30699  rdivmuldivd  30864  xrge0iifmhm  31184  xrge0pluscn  31185  xrge0tmd  31190
  Copyright terms: Public domain W3C validator