![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhmfmhm | Structured version Visualization version GIF version |
Description: The function fulfilling the conditions of mhmmnd 17738 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
ghmgrp.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ghmgrp.x | ⊢ 𝑋 = (Base‘𝐺) |
ghmgrp.y | ⊢ 𝑌 = (Base‘𝐻) |
ghmgrp.p | ⊢ + = (+g‘𝐺) |
ghmgrp.q | ⊢ ⨣ = (+g‘𝐻) |
ghmgrp.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
mhmmnd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Ref | Expression |
---|---|
mhmfmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmmnd.3 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | ghmgrp.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
3 | ghmgrp.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
4 | ghmgrp.y | . . . 4 ⊢ 𝑌 = (Base‘𝐻) | |
5 | ghmgrp.p | . . . 4 ⊢ + = (+g‘𝐺) | |
6 | ghmgrp.q | . . . 4 ⊢ ⨣ = (+g‘𝐻) | |
7 | ghmgrp.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
8 | 2, 3, 4, 5, 6, 7, 1 | mhmmnd 17738 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
9 | fof 6276 | . . . . 5 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
11 | 2 | 3expb 1114 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
12 | 11 | ralrimivva 3109 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
13 | eqid 2760 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
14 | 2, 3, 4, 5, 6, 7, 1, 13 | mhmid 17737 | . . . 4 ⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
15 | 10, 12, 14 | 3jca 1123 | . . 3 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻))) |
16 | 1, 8, 15 | jca31 558 | . 2 ⊢ (𝜑 → ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻)))) |
17 | eqid 2760 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
18 | 3, 4, 5, 6, 13, 17 | ismhm 17538 | . 2 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻)))) |
19 | 16, 18 | sylibr 224 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⟶wf 6045 –onto→wfo 6047 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 0gc0g 16302 Mndcmnd 17495 MndHom cmhm 17534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-map 8025 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |