Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmlin Structured version   Visualization version   GIF version

Theorem mhmlin 17274
 Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmlin.b 𝐵 = (Base‘𝑆)
mhmlin.p + = (+g𝑆)
mhmlin.q = (+g𝑇)
Assertion
Ref Expression
mhmlin ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem mhmlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmlin.b . . . . . 6 𝐵 = (Base‘𝑆)
2 eqid 2621 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 mhmlin.p . . . . . 6 + = (+g𝑆)
4 mhmlin.q . . . . . 6 = (+g𝑇)
5 eqid 2621 . . . . . 6 (0g𝑆) = (0g𝑆)
6 eqid 2621 . . . . . 6 (0g𝑇) = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 17269 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
87simprbi 480 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
98simp2d 1072 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
10 oveq1 6617 . . . . . 6 (𝑥 = 𝑋 → (𝑥 + 𝑦) = (𝑋 + 𝑦))
1110fveq2d 6157 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
12 fveq2 6153 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1312oveq1d 6625 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑦)))
1411, 13eqeq12d 2636 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦))))
15 oveq2 6618 . . . . . 6 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
1615fveq2d 6157 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
17 fveq2 6153 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1817oveq2d 6626 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑌)))
1916, 18eqeq12d 2636 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
2014, 19rspc2v 3310 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
219, 20syl5com 31 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
22213impib 1259 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  Basecbs 15792  +gcplusg 15873  0gc0g 16032  Mndcmnd 17226   MndHom cmhm 17265 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-map 7811  df-mhm 17267 This theorem is referenced by:  mhmf1o  17277  resmhm  17291  resmhm2  17292  resmhm2b  17293  mhmco  17294  mhmima  17295  mhmeql  17296  pwsco2mhm  17303  gsumwmhm  17314  mhmmulg  17515  ghmmhmb  17603  cntzmhm  17703  gsumzmhm  18269  rhmmul  18659  evlslem1  19447  mpfind  19468  mhmvlin  20135  mdetunilem7  20356  dchrzrhmul  24888  dchrmulcl  24891  dchrn0  24892  dchrinvcl  24895  dchrsum2  24910  sum2dchr  24916  mhmhmeotmd  29779
 Copyright terms: Public domain W3C validator