MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  midex Structured version   Visualization version   GIF version

Theorem midex 26525
Description: Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideu.3 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
midex (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥

Proof of Theorem midex
Dummy variables 𝑝 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mideu.1 . . 3 (𝜑𝐴𝑃)
2 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
3 colperpex.d . . . . 5 = (dist‘𝐺)
4 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
5 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
6 mideu.s . . . . 5 𝑆 = (pInvG‘𝐺)
7 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
87adantr 483 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
91adantr 483 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
10 eqid 2823 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
112, 3, 4, 5, 6, 8, 9, 10mircinv 26456 . . . 4 ((𝜑𝐴 = 𝐵) → ((𝑆𝐴)‘𝐴) = 𝐴)
12 simpr 487 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
1311, 12eqtr2d 2859 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵 = ((𝑆𝐴)‘𝐴))
14 fveq2 6672 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
1514fveq1d 6674 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥)‘𝐴) = ((𝑆𝐴)‘𝐴))
1615rspceeqv 3640 . . 3 ((𝐴𝑃𝐵 = ((𝑆𝐴)‘𝐴)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
171, 13, 16syl2an2r 683 . 2 ((𝜑𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
187ad3antrrr 728 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
1918ad4antr 730 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐺 ∈ TarskiG)
201ad3antrrr 728 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
2120ad4antr 730 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐴𝑃)
22 mideu.2 . . . . . . . 8 (𝜑𝐵𝑃)
2322ad3antrrr 728 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
2423ad4antr 730 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐵𝑃)
25 simpllr 774 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝐵)
2625ad4antr 730 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐴𝐵)
27 simplr 767 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑞𝑃)
2827ad4antr 730 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑞𝑃)
29 simp-4r 782 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑝𝑃)
30 simpllr 774 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡𝑃)
31 simp-5r 784 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
325, 19, 31perpln1 26498 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞) ∈ ran 𝐿)
332, 4, 5, 19, 21, 24, 26tgelrnln 26418 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
342, 3, 4, 5, 19, 32, 33, 31perpcom 26501 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝑞))
352, 4, 5, 19, 24, 28, 32tglnne 26416 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐵𝑞)
362, 4, 5, 19, 24, 28, 35tglinecom 26423 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞) = (𝑞𝐿𝐵))
3734, 36breqtrd 5094 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑞𝐿𝐵))
38 simplr 767 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
3938simpld 497 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
405, 19, 39perpln1 26498 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝑝) ∈ ran 𝐿)
412, 3, 4, 5, 19, 40, 33, 39perpcom 26501 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑝))
4226neneqd 3023 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ¬ 𝐴 = 𝐵)
4338simprd 498 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))
4443simpld 497 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
4544orcomd 867 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
4645ord 860 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (¬ 𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
4742, 46mpd 15 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡 ∈ (𝐴𝐿𝐵))
4843simprd 498 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡 ∈ (𝑞𝐼𝑝))
49 simpr 487 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞))
502, 3, 4, 5, 19, 6, 21, 24, 26, 28, 29, 30, 37, 41, 47, 48, 49mideulem 26524 . . . . 5 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
5118ad4antr 730 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐺 ∈ TarskiG)
5251adantr 483 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐺 ∈ TarskiG)
53 simprl 769 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝑥𝑃)
54 eqid 2823 . . . . . . . 8 (𝑆𝑥) = (𝑆𝑥)
5523ad4antr 730 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐵𝑃)
5655adantr 483 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐵𝑃)
57 simprr 771 . . . . . . . . 9 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐴 = ((𝑆𝑥)‘𝐵))
5857eqcomd 2829 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → ((𝑆𝑥)‘𝐵) = 𝐴)
592, 3, 4, 5, 6, 52, 53, 54, 56, 58mircom 26451 . . . . . . 7 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → ((𝑆𝑥)‘𝐴) = 𝐵)
6059eqcomd 2829 . . . . . 6 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐵 = ((𝑆𝑥)‘𝐴))
6120ad4antr 730 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝑃)
6225ad4antr 730 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝐵)
6362necomd 3073 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐵𝐴)
64 simp-4r 782 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑝𝑃)
6527ad4antr 730 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑞𝑃)
66 simpllr 774 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡𝑃)
67 simplr 767 . . . . . . . . . . . . 13 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
6867simpld 497 . . . . . . . . . . . 12 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
695, 51, 68perpln1 26498 . . . . . . . . . . 11 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝) ∈ ran 𝐿)
702, 4, 5, 51, 61, 64, 69tglnne 26416 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝑝)
712, 4, 5, 51, 61, 64, 70tglinecom 26423 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝) = (𝑝𝐿𝐴))
7271, 69eqeltrrd 2916 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴) ∈ ran 𝐿)
732, 4, 5, 51, 55, 61, 63tgelrnln 26418 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴) ∈ ran 𝐿)
742, 4, 5, 51, 61, 55, 62tglinecom 26423 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
7568, 71, 743brtr3d 5099 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴)(⟂G‘𝐺)(𝐵𝐿𝐴))
762, 3, 4, 5, 51, 72, 73, 75perpcom 26501 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑝𝐿𝐴))
77 simp-5r 784 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
785, 51, 77perpln1 26498 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞) ∈ ran 𝐿)
7977, 74breqtrd 5094 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴))
802, 3, 4, 5, 51, 78, 73, 79perpcom 26501 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐵𝐿𝑞))
8162neneqd 3023 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ¬ 𝐴 = 𝐵)
8267simprd 498 . . . . . . . . . . . 12 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))
8382simpld 497 . . . . . . . . . . 11 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
8483orcomd 867 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
8584ord 860 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (¬ 𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
8681, 85mpd 15 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝐴𝐿𝐵))
8786, 74eleqtrd 2917 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝐵𝐿𝐴))
8882simprd 498 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝑞𝐼𝑝))
892, 3, 4, 51, 65, 66, 64, 88tgbtwncom 26276 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝑝𝐼𝑞))
90 simpr 487 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝))
912, 3, 4, 5, 51, 6, 55, 61, 63, 64, 65, 66, 76, 80, 87, 89, 90mideulem 26524 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ∃𝑥𝑃 𝐴 = ((𝑆𝑥)‘𝐵))
9260, 91reximddv 3277 . . . . 5 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
93 eqid 2823 . . . . . 6 (≤G‘𝐺) = (≤G‘𝐺)
9418ad3antrrr 728 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐺 ∈ TarskiG)
9520ad3antrrr 728 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐴𝑃)
96 simpllr 774 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝑝𝑃)
9723ad3antrrr 728 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐵𝑃)
98 simp-5r 784 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝑞𝑃)
992, 3, 4, 93, 94, 95, 96, 97, 98legtrid 26379 . . . . 5 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → ((𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞) ∨ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)))
10050, 92, 99mpjaodan 955 . . . 4 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
101 mideu.3 . . . . . . 7 (𝜑𝐺DimTarskiG≥2)
102101ad3antrrr 728 . . . . . 6 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
1032, 3, 4, 5, 18, 20, 23, 27, 25, 102colperpex 26521 . . . . 5 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
104 r19.42v 3352 . . . . . 6 (∃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))) ↔ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
105104rexbii 3249 . . . . 5 (∃𝑝𝑃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))) ↔ ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
106103, 105sylibr 236 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
107100, 106r19.29vva 3338 . . 3 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
1087adantr 483 . . . . 5 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
10922adantr 483 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝑃)
1101adantr 483 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝑃)
111 simpr 487 . . . . . 6 ((𝜑𝐴𝐵) → 𝐴𝐵)
112111necomd 3073 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝐴)
113101adantr 483 . . . . 5 ((𝜑𝐴𝐵) → 𝐺DimTarskiG≥2)
1142, 3, 4, 5, 108, 109, 110, 110, 112, 113colperpex 26521 . . . 4 ((𝜑𝐴𝐵) → ∃𝑞𝑃 ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))))
115 simprl 769 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴))
1162, 4, 5, 108, 110, 109, 111tglinecom 26423 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
117116adantr 483 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
118115, 117breqtrrd 5096 . . . . . 6 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
119118ex 415 . . . . 5 ((𝜑𝐴𝐵) → (((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)))
120119reximdv 3275 . . . 4 ((𝜑𝐴𝐵) → (∃𝑞𝑃 ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))) → ∃𝑞𝑃 (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)))
121114, 120mpd 15 . . 3 ((𝜑𝐴𝐵) → ∃𝑞𝑃 (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
122107, 121r19.29a 3291 . 2 ((𝜑𝐴𝐵) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
12317, 122pm2.61dane 3106 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wrex 3141   class class class wbr 5068  ran crn 5558  cfv 6357  (class class class)co 7158  2c2 11695  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  DimTarskiGcstrkgld 26222  Itvcitv 26224  LineGclng 26225  ≤Gcleg 26370  pInvGcmir 26440  ⟂Gcperpg 26483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkgld 26240  df-trkg 26241  df-cgrg 26299  df-leg 26371  df-mir 26441  df-rag 26482  df-perpg 26484
This theorem is referenced by:  mideu  26526  opphllem5  26539  opphl  26542
  Copyright terms: Public domain W3C validator