MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  midexlem Structured version   Visualization version   GIF version

Theorem midexlem 26472
Description: Lemma for the existence of a middle point. Lemma 7.25 of [Schwabhauser] p. 55. This proof of the existence of a midpoint requires the existence of a third point 𝐶 equidistant to 𝐴 and 𝐵 This condition will be removed later. Because the operation notation (𝐴(midG‘𝐺)𝐵) for a midpoint implies its uniqueness, it cannot be used until uniqueness is proven, and until then, an equivalent mirror point notation 𝐵 = (𝑀𝐴) has to be used. See mideu 26518 for the existence and uniqueness of the midpoint. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
midexlem.m 𝑀 = (𝑆𝑥)
midexlem.a (𝜑𝐴𝑃)
midexlem.b (𝜑𝐵𝑃)
midexlem.c (𝜑𝐶𝑃)
midexlem.1 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
Assertion
Ref Expression
midexlem (𝜑 → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem midexlem
Dummy variables 𝑝 𝑞 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 midexlem.c . . . . 5 (𝜑𝐶𝑃)
2 midexlem.m . . . . . . . 8 𝑀 = (𝑆𝑥)
3 fveq2 6664 . . . . . . . 8 (𝑥 = 𝐶 → (𝑆𝑥) = (𝑆𝐶))
42, 3syl5eq 2868 . . . . . . 7 (𝑥 = 𝐶𝑀 = (𝑆𝐶))
54fveq1d 6666 . . . . . 6 (𝑥 = 𝐶 → (𝑀𝐴) = ((𝑆𝐶)‘𝐴))
65rspceeqv 3637 . . . . 5 ((𝐶𝑃𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
71, 6sylan 582 . . . 4 ((𝜑𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
87adantlr 713 . . 3 (((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
9 midexlem.a . . . . 5 (𝜑𝐴𝑃)
10 mirval.p . . . . . . . 8 𝑃 = (Base‘𝐺)
11 mirval.d . . . . . . . 8 = (dist‘𝐺)
12 mirval.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
13 mirval.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
14 mirval.s . . . . . . . 8 𝑆 = (pInvG‘𝐺)
15 mirval.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
16 eqid 2821 . . . . . . . 8 (𝑆𝐴) = (𝑆𝐴)
1710, 11, 12, 13, 14, 15, 9, 16mircinv 26448 . . . . . . 7 (𝜑 → ((𝑆𝐴)‘𝐴) = 𝐴)
1817adantr 483 . . . . . 6 ((𝜑𝐴 = 𝐵) → ((𝑆𝐴)‘𝐴) = 𝐴)
19 simpr 487 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
2018, 19eqtr2d 2857 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵 = ((𝑆𝐴)‘𝐴))
21 fveq2 6664 . . . . . . . 8 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
222, 21syl5eq 2868 . . . . . . 7 (𝑥 = 𝐴𝑀 = (𝑆𝐴))
2322fveq1d 6666 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝐴) = ((𝑆𝐴)‘𝐴))
2423rspceeqv 3637 . . . . 5 ((𝐴𝑃𝐵 = ((𝑆𝐴)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
259, 20, 24syl2an2r 683 . . . 4 ((𝜑𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
2625adantlr 713 . . 3 (((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
2715adantr 483 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG)
28 eqid 2821 . . . 4 (𝑆𝐶) = (𝑆𝐶)
299adantr 483 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴𝑃)
30 midexlem.b . . . . 5 (𝜑𝐵𝑃)
3130adantr 483 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵𝑃)
321adantr 483 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝑃)
33 simpr 487 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
34 midexlem.1 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
3534adantr 483 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 𝐴) = (𝐶 𝐵))
3610, 11, 12, 13, 14, 27, 28, 29, 31, 32, 33, 35colmid 26468 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐵 = ((𝑆𝐶)‘𝐴) ∨ 𝐴 = 𝐵))
378, 26, 36mpjaodan 955 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
3815adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG)
3938ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐺 ∈ TarskiG)
4039ad2antrr 724 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐺 ∈ TarskiG)
4140ad2antrr 724 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐺 ∈ TarskiG)
4241adantr 483 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐺 ∈ TarskiG)
43 simprl 769 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥𝑃)
449adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴𝑃)
4544ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑃)
4645ad2antrr 724 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴𝑃)
4746ad2antrr 724 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐴𝑃)
4847adantr 483 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐴𝑃)
4930ad3antrrr 728 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵𝑃)
5049ad2antrr 724 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵𝑃)
5150ad2antrr 724 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐵𝑃)
5251adantr 483 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵𝑃)
5342ad2antrr 724 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐺 ∈ TarskiG)
54 simpllr 774 . . . . . . . . . 10 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟𝑃)
5554ad2antrr 724 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟𝑃)
561adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝑃)
5756ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶𝑃)
5857ad2antrr 724 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐶𝑃)
5958ad2antrr 724 . . . . . . . . . . 11 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐶𝑃)
6059adantr 483 . . . . . . . . . 10 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐶𝑃)
6160ad2antrr 724 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝑃)
6243ad2antrr 724 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑥𝑃)
63 eqid 2821 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
6452ad2antrr 724 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝑃)
6548ad2antrr 724 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑃)
66 simpr 487 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝑟 = 𝐴)
6730adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵𝑃)
68 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
6910, 12, 13, 38, 56, 44, 67, 68ncolne1 26405 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝐴)
7069ad7antr 736 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐶𝐴)
7170ad2antrr 724 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝐴)
7271adantr 483 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝐶𝐴)
7372necomd 3071 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝐴𝐶)
7466, 73eqnetrd 3083 . . . . . . . . . 10 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝑟𝐶)
7553adantr 483 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐺 ∈ TarskiG)
7655adantr 483 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝑃)
7765adantr 483 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐴𝑃)
7861adantr 483 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐶𝑃)
79 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝑞𝑃)
8079ad3antrrr 728 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑞𝑃)
8180ad2antrr 724 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝑃)
8281adantr 483 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑞𝑃)
8368ad9antr 740 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
8410, 13, 12, 53, 65, 64, 61, 83ncolrot2 26343 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
8515adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐺 ∈ TarskiG)
8630adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐵𝑃)
879adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐴𝑃)
881adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐶𝑃)
89 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9010, 13, 12, 85, 86, 87, 88, 89colcom 26338 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9190stoic1a 1769 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9291ad9antr 740 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9310, 12, 13, 53, 61, 64, 65, 92ncolne1 26405 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝐵)
9493necomd 3071 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝐶)
95 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵 ∈ (𝐶𝐼𝑞))
9695ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 ∈ (𝐶𝐼𝑞))
9796ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵 ∈ (𝐶𝐼𝑞))
9810, 12, 13, 53, 61, 64, 81, 93, 97btwnlng3 26401 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞 ∈ (𝐶𝐿𝐵))
9910, 12, 13, 53, 64, 61, 81, 94, 98lncom 26402 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞 ∈ (𝐵𝐿𝐶))
10053adantr 483 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐺 ∈ TarskiG)
10161adantr 483 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶𝑃)
10264adantr 483 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵𝑃)
10397adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝑞))
104 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝑞 = 𝐶)
105104oveq2d 7166 . . . . . . . . . . . . . . . . . . 19 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → (𝐶𝐼𝑞) = (𝐶𝐼𝐶))
106103, 105eleqtrd 2915 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝐶))
10710, 11, 12, 100, 101, 102, 106axtgbtwnid 26246 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶 = 𝐵)
10893adantr 483 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶𝐵)
109108neneqd 3021 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → ¬ 𝐶 = 𝐵)
110107, 109pm2.65da 815 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ 𝑞 = 𝐶)
111110neqned 3023 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐶)
11210, 12, 13, 53, 64, 61, 65, 81, 84, 99, 111ncolncol 26426 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
11310, 13, 12, 53, 61, 65, 81, 112ncolcom 26341 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
114113adantr 483 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → ¬ (𝑞 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
115 simp-4r 782 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝑝𝑃)
116115ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑝𝑃)
117116adantr 483 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑝𝑃)
118117ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝑃)
119 simp-4r 782 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝)))
120119simprd 498 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 𝑞) = (𝐴 𝑝))
121120eqcomd 2827 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐴 𝑝) = (𝐵 𝑞))
122121ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑝) = (𝐵 𝑞))
12310, 11, 12, 53, 65, 118, 64, 81, 122tgcgrcomlr 26260 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑝 𝐴) = (𝑞 𝐵))
124 simpllr 774 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
125124ad5antr 732 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
126125simprd 498 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑝)
127126necomd 3071 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝐴)
12810, 11, 12, 53, 118, 65, 81, 64, 123, 127tgcgrneq 26263 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐵)
12910, 12, 13, 53, 61, 64, 65, 81, 92, 98, 128ncolncol 26426 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
13010, 12, 13, 53, 81, 64, 65, 129ncolne2 26406 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐴)
131130necomd 3071 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑞)
132 simp-4r 782 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
133132simpld 497 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐴𝐼𝑞))
13410, 12, 13, 53, 65, 81, 55, 131, 133btwnlng1 26399 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐴𝐿𝑞))
13510, 12, 13, 53, 81, 65, 55, 130, 134lncom 26402 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝑞𝐿𝐴))
136135adantr 483 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟 ∈ (𝑞𝐿𝐴))
137 simpr 487 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝐴)
13810, 12, 13, 75, 82, 77, 78, 76, 114, 136, 137ncolncol 26426 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → ¬ (𝑟 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
13910, 12, 13, 75, 76, 77, 78, 138ncolne2 26406 . . . . . . . . . 10 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝐶)
14074, 139pm2.61dane 3104 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟𝐶)
141 simpllr 774 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶))))
142141simprd 498 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))
143142simprd 498 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑥 ∈ (𝑟𝐼𝐶))
14410, 13, 12, 53, 55, 62, 61, 143btwncolg3 26337 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐶 ∈ (𝑟𝐿𝑥) ∨ 𝑟 = 𝑥))
145 simplr 767 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠𝑃)
146 simplr 767 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
147146simprd 498 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ (𝐵𝐼𝑝))
148147ad2antrr 724 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐵𝐼𝑝))
149 simprl 769 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐴𝐼𝑞))
150124simpld 497 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴 ∈ (𝐶𝐼𝑝))
151150ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐴 ∈ (𝐶𝐼𝑝))
152151adantr 483 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐴 ∈ (𝐶𝐼𝑝))
15334ad8antr 738 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐶 𝐴) = (𝐶 𝐵))
154153eqcomd 2827 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐶 𝐵) = (𝐶 𝐴))
15510, 11, 12, 42, 48, 52axtgcgrrflx 26242 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐴 𝐵) = (𝐵 𝐴))
15610, 11, 12, 42, 60, 48, 117, 60, 52, 80, 52, 48, 70, 152, 96, 153, 121, 154, 155axtg5seg 26245 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑝 𝐵) = (𝑞 𝐴))
15710, 11, 12, 42, 117, 52, 80, 48, 156tgcgrcomlr 26260 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 𝑝) = (𝐴 𝑞))
158157ad2antrr 724 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑝) = (𝐴 𝑞))
159 simprr 771 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)
16010, 11, 12, 63, 53, 64, 55, 118, 65, 145, 81, 159cgr3simp2 26301 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝑝) = (𝑠 𝑞))
16110, 11, 12, 53, 64, 65axtgcgrrflx 26242 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝐴) = (𝐴 𝐵))
16210, 11, 12, 53, 64, 55, 118, 65, 65, 145, 81, 64, 148, 149, 158, 160, 161, 123tgifscgr 26288 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝐴) = (𝑠 𝐵))
163 simp-10l 793 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝜑)
164125simpld 497 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴 ∈ (𝐶𝐼𝑝))
16510, 12, 13, 53, 61, 65, 118, 71, 164btwnlng3 26401 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝 ∈ (𝐶𝐿𝐴))
16610, 12, 13, 53, 61, 65, 64, 118, 83, 165, 127ncolncol 26426 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
16715ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐺 ∈ TarskiG)
168 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝑝𝑃)
1699ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐴𝑃)
17030ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐵𝑃)
171 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
17210, 13, 12, 167, 168, 169, 170, 171colrot1 26339 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
173172stoic1a 1769 . . . . . . . . . . . . 13 (((𝜑𝑝𝑃) ∧ ¬ (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
174163, 118, 166, 173syl21anc 835 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
17510, 12, 13, 53, 118, 65, 64, 166ncolne2 26406 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝐵)
176175necomd 3071 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝑝)
177176neneqd 3021 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ 𝐵 = 𝑝)
17810, 13, 12, 53, 65, 81, 55, 133btwncolg1 26335 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 ∈ (𝐴𝐿𝑞) ∨ 𝐴 = 𝑞))
17910, 11, 12, 53, 55, 65, 145, 64, 162tgcgrcomlr 26260 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑟) = (𝐵 𝑠))
180120ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑞) = (𝐴 𝑝))
18110, 11, 12, 53, 118, 81axtgcgrrflx 26242 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑝 𝑞) = (𝑞 𝑝))
18210, 11, 12, 53, 64, 55, 118, 81, 65, 145, 81, 118, 148, 149, 158, 160, 180, 181tgifscgr 26288 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝑞) = (𝑠 𝑝))
18310, 11, 12, 53, 65, 145, 81, 149tgbtwncom 26268 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝑞𝐼𝐴))
18410, 11, 12, 42, 52, 54, 117, 147tgbtwncom 26268 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ (𝑝𝐼𝐵))
185184ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝑝𝐼𝐵))
186160eqcomd 2827 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝑞) = (𝑟 𝑝))
18710, 11, 12, 53, 145, 81, 55, 118, 186tgcgrcomlr 26260 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑞 𝑠) = (𝑝 𝑟))
18810, 11, 12, 63, 53, 64, 55, 118, 65, 145, 81, 159cgr3simp1 26300 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑟) = (𝐴 𝑠))
189188eqcomd 2827 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑠) = (𝐵 𝑟))
19010, 11, 12, 53, 65, 145, 64, 55, 189tgcgrcomlr 26260 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝐴) = (𝑟 𝐵))
19110, 11, 12, 53, 81, 145, 65, 118, 55, 64, 183, 185, 187, 190tgcgrextend 26265 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑞 𝐴) = (𝑝 𝐵))
19210, 11, 63, 53, 65, 55, 81, 64, 145, 118, 179, 182, 191trgcgr 26296 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ⟨“𝐴𝑟𝑞”⟩(cgrG‘𝐺)⟨“𝐵𝑠𝑝”⟩)
19310, 13, 12, 53, 65, 55, 81, 63, 64, 145, 118, 178, 192lnxfr 26346 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 ∈ (𝐵𝐿𝑝) ∨ 𝐵 = 𝑝))
194193orcomd 867 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 = 𝑝𝑠 ∈ (𝐵𝐿𝑝)))
195194ord 860 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (¬ 𝐵 = 𝑝𝑠 ∈ (𝐵𝐿𝑝)))
196177, 195mpd 15 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐵𝐿𝑝))
19710, 12, 13, 53, 64, 118, 55, 176, 148btwnlng1 26399 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐵𝐿𝑝))
19810, 12, 13, 53, 65, 81, 145, 131, 149btwnlng1 26399 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐴𝐿𝑞))
19910, 12, 13, 53, 64, 118, 65, 81, 174, 196, 197, 198, 134tglineinteq 26425 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 = 𝑟)
200199oveq1d 7165 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝐵) = (𝑟 𝐵))
201162, 200eqtr2d 2857 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝐵) = (𝑟 𝐴))
202154ad2antrr 724 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐶 𝐵) = (𝐶 𝐴))
20310, 13, 12, 53, 55, 61, 62, 63, 64, 65, 11, 140, 144, 201, 202lncgr 26349 . . . . . . . 8 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥 𝐵) = (𝑥 𝐴))
20410, 11, 12, 63, 42, 52, 54, 117, 48, 80, 147, 157tgcgrxfr 26298 . . . . . . . 8 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → ∃𝑠𝑃 (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩))
205203, 204r19.29a 3289 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑥 𝐵) = (𝑥 𝐴))
206 simprrl 779 . . . . . . . 8 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ (𝐴𝐼𝐵))
20710, 11, 12, 42, 48, 43, 52, 206tgbtwncom 26268 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ (𝐵𝐼𝐴))
20810, 11, 12, 13, 14, 42, 43, 2, 48, 52, 205, 207ismir 26439 . . . . . 6 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 = (𝑀𝐴))
209 simplr 767 . . . . . . 7 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑟𝑃)
210 simprr 771 . . . . . . 7 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑟 ∈ (𝐵𝐼𝑝))
21110, 11, 12, 41, 59, 51, 116, 47, 209, 151, 210axtgpasch 26247 . . . . . 6 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))
212208, 211reximddv 3275 . . . . 5 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
21310, 11, 12, 40, 58, 46, 115, 150tgbtwncom 26268 . . . . . 6 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴 ∈ (𝑝𝐼𝐶))
21410, 11, 12, 40, 58, 50, 79, 95tgbtwncom 26268 . . . . . 6 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵 ∈ (𝑞𝐼𝐶))
21510, 11, 12, 40, 115, 79, 58, 46, 50, 213, 214axtgpasch 26247 . . . . 5 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → ∃𝑟𝑃 (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
216212, 215r19.29a 3289 . . . 4 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
217 simplr 767 . . . . 5 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝑃)
21810, 11, 12, 39, 57, 49, 45, 217axtgsegcon 26244 . . . 4 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → ∃𝑞𝑃 (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝)))
219216, 218r19.29a 3289 . . 3 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
22010fvexi 6678 . . . . . 6 𝑃 ∈ V
221220a1i 11 . . . . 5 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝑃 ∈ V)
222221, 56, 44, 69nehash2 13826 . . . 4 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 2 ≤ (♯‘𝑃))
22310, 11, 12, 38, 56, 44, 222tgbtwndiff 26286 . . 3 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑝𝑃 (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
224219, 223r19.29a 3289 . 2 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
22537, 224pm2.61dan 811 1 (𝜑 → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wrex 3139  Vcvv 3494   class class class wbr 5058  cfv 6349  (class class class)co 7150  ⟨“cs3 14198  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216  LineGclng 26217  cgrGccgrg 26290  pInvGcmir 26432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205  df-trkgc 26228  df-trkgb 26229  df-trkgcb 26230  df-trkg 26233  df-cgrg 26291  df-mir 26433
This theorem is referenced by:  footexALT  26498  footex  26501  colperpexlem3  26512  opphllem  26515
  Copyright terms: Public domain W3C validator