MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3a Structured version   Visualization version   GIF version

Theorem minveclem3a 24024
Description: Lemma for minvec 24033. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem3a (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝐷   𝑦,𝑆

Proof of Theorem minveclem3a
StepHypRef Expression
1 minvec.w . . 3 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
2 eqid 2821 . . . 4 (Base‘(𝑈s 𝑌)) = (Base‘(𝑈s 𝑌))
3 eqid 2821 . . . 4 ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
42, 3cmscmet 23943 . . 3 ((𝑈s 𝑌) ∈ CMetSp → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
51, 4syl 17 . 2 (𝜑 → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
6 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
76reseq1i 5844 . . 3 (𝐷 ↾ (𝑌 × 𝑌)) = (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌))
8 minvec.y . . . . . . 7 (𝜑𝑌 ∈ (LSubSp‘𝑈))
9 minvec.x . . . . . . . 8 𝑋 = (Base‘𝑈)
10 eqid 2821 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
119, 10lssss 19702 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
128, 11syl 17 . . . . . 6 (𝜑𝑌𝑋)
13 xpss12 5565 . . . . . 6 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1412, 12, 13syl2anc 586 . . . . 5 (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1514resabs1d 5879 . . . 4 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘𝑈) ↾ (𝑌 × 𝑌)))
16 eqid 2821 . . . . . . 7 (𝑈s 𝑌) = (𝑈s 𝑌)
17 eqid 2821 . . . . . . 7 (dist‘𝑈) = (dist‘𝑈)
1816, 17ressds 16680 . . . . . 6 (𝑌 ∈ (LSubSp‘𝑈) → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
198, 18syl 17 . . . . 5 (𝜑 → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
2016, 9ressbas2 16549 . . . . . . 7 (𝑌𝑋𝑌 = (Base‘(𝑈s 𝑌)))
2112, 20syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(𝑈s 𝑌)))
2221sqxpeqd 5582 . . . . 5 (𝜑 → (𝑌 × 𝑌) = ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
2319, 22reseq12d 5849 . . . 4 (𝜑 → ((dist‘𝑈) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2415, 23eqtrd 2856 . . 3 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
257, 24syl5eq 2868 . 2 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2621fveq2d 6669 . 2 (𝜑 → (CMet‘𝑌) = (CMet‘(Base‘(𝑈s 𝑌))))
275, 25, 263eltr4d 2928 1 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wss 3936  cmpt 5139   × cxp 5548  ran crn 5551  cres 5552  cfv 6350  (class class class)co 7150  infcinf 8899  cr 10530   < clt 10669  Basecbs 16477  s cress 16478  distcds 16568  TopOpenctopn 16689  -gcsg 18099  LSubSpclss 19697  normcnm 23180  ℂPreHilccph 23764  CMetccmet 23851  CMetSpccms 23929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-ds 16581  df-lss 19698  df-cms 23932
This theorem is referenced by:  minveclem3  24026  minveclem4a  24027
  Copyright terms: Public domain W3C validator