MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4 Structured version   Visualization version   GIF version

Theorem minveclem4 23184
Description: Lemma for minvec 23188. The convergent point of the Cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
minvec.t 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))
Assertion
Ref Expression
minveclem4 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑟,𝑦,𝐴   𝐽,𝑟,𝑥,𝑦   𝑥,𝑃,𝑦   𝑥,𝐹,𝑦   𝑥,𝑁,𝑦   𝜑,𝑟,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑋,𝑟,𝑥,𝑦   𝑌,𝑟,𝑥,𝑦   𝐷,𝑟,𝑥,𝑦   𝑆,𝑟,𝑥,𝑦   𝑇,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑇(𝑥)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 inss2 3826 . . 3 ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ 𝑌
2 minvec.x . . . 4 𝑋 = (Base‘𝑈)
3 minvec.m . . . 4 = (-g𝑈)
4 minvec.n . . . 4 𝑁 = (norm‘𝑈)
5 minvec.u . . . 4 (𝜑𝑈 ∈ ℂPreHil)
6 minvec.y . . . 4 (𝜑𝑌 ∈ (LSubSp‘𝑈))
7 minvec.w . . . 4 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
8 minvec.a . . . 4 (𝜑𝐴𝑋)
9 minvec.j . . . 4 𝐽 = (TopOpen‘𝑈)
10 minvec.r . . . 4 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
11 minvec.s . . . 4 𝑆 = inf(𝑅, ℝ, < )
12 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
13 minvec.f . . . 4 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
14 minvec.p . . . 4 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4a 23182 . . 3 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
161, 15sseldi 3593 . 2 (𝜑𝑃𝑌)
1712oveqi 6648 . . . . . . 7 (𝐴𝐷𝑃) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑃)
182, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4b 23183 . . . . . . . 8 (𝜑𝑃𝑋)
198, 18ovresd 6786 . . . . . . 7 (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑃) = (𝐴(dist‘𝑈)𝑃))
2017, 19syl5eq 2666 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) = (𝐴(dist‘𝑈)𝑃))
21 cphngp 22954 . . . . . . . 8 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
225, 21syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmGrp)
23 eqid 2620 . . . . . . . 8 (dist‘𝑈) = (dist‘𝑈)
244, 2, 3, 23ngpds 22389 . . . . . . 7 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑃𝑋) → (𝐴(dist‘𝑈)𝑃) = (𝑁‘(𝐴 𝑃)))
2522, 8, 18, 24syl3anc 1324 . . . . . 6 (𝜑 → (𝐴(dist‘𝑈)𝑃) = (𝑁‘(𝐴 𝑃)))
2620, 25eqtrd 2654 . . . . 5 (𝜑 → (𝐴𝐷𝑃) = (𝑁‘(𝐴 𝑃)))
2726adantr 481 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) = (𝑁‘(𝐴 𝑃)))
28 ngpms 22385 . . . . . . . 8 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
292, 12msmet 22243 . . . . . . . 8 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
3022, 28, 293syl 18 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
31 metcl 22118 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑃𝑋) → (𝐴𝐷𝑃) ∈ ℝ)
3230, 8, 18, 31syl3anc 1324 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) ∈ ℝ)
3332adantr 481 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ∈ ℝ)
342, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem4c 23177 . . . . . 6 (𝜑𝑆 ∈ ℝ)
3534adantr 481 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ∈ ℝ)
3622adantr 481 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmGrp)
37 cphlmod 22955 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
385, 37syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
3938adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑈 ∈ LMod)
408adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
41 eqid 2620 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
422, 41lssss 18918 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
436, 42syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
4443sselda 3595 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
452, 3lmodvsubcl 18889 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋) → (𝐴 𝑦) ∈ 𝑋)
4639, 40, 44, 45syl3anc 1324 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴 𝑦) ∈ 𝑋)
472, 4nmcl 22401 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
4836, 46, 47syl2anc 692 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
4934, 32ltnled 10169 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ ¬ (𝐴𝐷𝑃) ≤ 𝑆))
502, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem3b 23180 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (fBas‘𝑌))
51 fbsspw 21617 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
5250, 51syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ⊆ 𝒫 𝑌)
53 sspwb 4908 . . . . . . . . . . . . . . . . . . . 20 (𝑌𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋)
5443, 53sylib 208 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋)
5552, 54sstrd 3605 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ⊆ 𝒫 𝑋)
56 fvex 6188 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝑈) ∈ V
572, 56eqeltri 2695 . . . . . . . . . . . . . . . . . . 19 𝑋 ∈ V
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ V)
59 fbasweak 21650 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
6050, 55, 58, 59syl3anc 1324 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (fBas‘𝑋))
6160adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐹 ∈ (fBas‘𝑋))
62 fgcl 21663 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
6361, 62syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
64 ssfg 21657 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
6561, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐹 ⊆ (𝑋filGen𝐹))
66 minvec.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))
6732, 34readdcld 10054 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ)
6867rehalfcld 11264 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
6968resqcld 13018 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℝ)
7034resqcld 13018 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆↑2) ∈ ℝ)
7169, 70resubcld 10443 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
7271adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
7334, 32, 34ltadd1d 10605 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ (𝑆 + 𝑆) < ((𝐴𝐷𝑃) + 𝑆)))
7434recnd 10053 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ ℂ)
75742timesd 11260 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆))
7675breq1d 4654 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷𝑃) + 𝑆)))
77 2re 11075 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℝ
78 2pos 11097 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < 2
7977, 78pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℝ ∧ 0 < 2)
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
81 ltmuldiv2 10882 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
8234, 67, 80, 81syl3anc 1324 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
8373, 76, 823bitr2d 296 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
842, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 23176 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
8584simp3d 1073 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
8684simp1d 1071 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑅 ⊆ ℝ)
8784simp2d 1072 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑅 ≠ ∅)
88 0re 10025 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
89 breq1 4647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
9089ralbidv 2983 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9190rspcev 3304 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
9288, 85, 91sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
9388a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 0 ∈ ℝ)
94 infregelb 10992 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9586, 87, 92, 93, 94syl31anc 1327 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9685, 95mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
9796, 11syl6breqr 4686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ≤ 𝑆)
98 metge0 22131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑃𝑋) → 0 ≤ (𝐴𝐷𝑃))
9930, 8, 18, 98syl3anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 ≤ (𝐴𝐷𝑃))
10032, 34, 99, 97addge0d 10588 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 0 ≤ ((𝐴𝐷𝑃) + 𝑆))
101 divge0 10877 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷𝑃) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
10267, 100, 80, 101syl21anc 1323 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
10334, 68, 97, 102lt2sqd 13026 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
10470, 69posdifd 10599 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑆↑2) < ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))))
10583, 103, 1043bitrd 294 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))))
106105biimpa 501 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)))
10772, 106elrpd 11854 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ+)
10866, 107syl5eqel 2703 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑇 ∈ ℝ+)
1096adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑌 ∈ (LSubSp‘𝑈))
110 rabexg 4803 . . . . . . . . . . . . . . . . . . 19 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V)
111109, 110syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V)
112 eqid 2620 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
113 oveq2 6643 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑇 → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + 𝑇))
114113breq2d 4656 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑇 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)))
115114rabbidv 3184 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑇 → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)})
116112, 115elrnmpt1s 5362 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ ℝ+ ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
117108, 111, 116syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
118117, 13syl6eleqr 2710 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ 𝐹)
11965, 118sseldd 3596 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ (𝑋filGen𝐹))
120 ssrab2 3679 . . . . . . . . . . . . . . . 16 {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋
121120a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋)
12266oveq2i 6646 . . . . . . . . . . . . . . . . . . . 20 ((𝑆↑2) + 𝑇) = ((𝑆↑2) + (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)))
12370ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝑆↑2) ∈ ℝ)
124123recnd 10053 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝑆↑2) ∈ ℂ)
12568ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
126125resqcld 13018 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℝ)
127126recnd 10053 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℂ)
128124, 127pncan3d 10380 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝑆↑2) + (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))) = ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))
129122, 128syl5eq 2666 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝑆↑2) + 𝑇) = ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))
130129breq2d 4656 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
13130ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝐷 ∈ (Met‘𝑋))
1328ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝐴𝑋)
13344adantlr 750 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝑦𝑋)
134 metcl 22118 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) ∈ ℝ)
135131, 132, 133, 134syl3anc 1324 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) ∈ ℝ)
136 metge0 22131 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑦𝑋) → 0 ≤ (𝐴𝐷𝑦))
137131, 132, 133, 136syl3anc 1324 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 0 ≤ (𝐴𝐷𝑦))
138102ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
139135, 125, 137, 138le2sqd 13027 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
140130, 139bitr4d 271 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇) ↔ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
141140rabbidva 3183 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} = {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
14243adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑌𝑋)
143 rabss2 3677 . . . . . . . . . . . . . . . . 17 (𝑌𝑋 → {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
144142, 143syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
145141, 144eqsstrd 3631 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
146 filss 21638 . . . . . . . . . . . . . . 15 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ ({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ (𝑋filGen𝐹) ∧ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋 ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹))
14763, 119, 121, 145, 146syl13anc 1326 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹))
148 flimclsi 21763 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹) → (𝐽 fLim (𝑋filGen𝐹)) ⊆ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
149147, 148syl 17 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐽 fLim (𝑋filGen𝐹)) ⊆ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
150 inss1 3825 . . . . . . . . . . . . . . 15 ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹))
151150, 15sseldi 3593 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ (𝐽 fLim (𝑋filGen𝐹)))
152151adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ (𝐽 fLim (𝑋filGen𝐹)))
153149, 152sseldd 3596 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
154 ngpxms 22386 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp)
1552, 12xmsxmet 22242 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
15622, 154, 1553syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (∞Met‘𝑋))
157156adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐷 ∈ (∞Met‘𝑋))
1588adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐴𝑋)
15968adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
160159rexrd 10074 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ*)
161 eqid 2620 . . . . . . . . . . . . . . . 16 (MetOpen‘𝐷) = (MetOpen‘𝐷)
162 eqid 2620 . . . . . . . . . . . . . . . 16 {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}
163161, 162blcld 22291 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ*) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘(MetOpen‘𝐷)))
164157, 158, 160, 163syl3anc 1324 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘(MetOpen‘𝐷)))
1659, 2, 12xmstopn 22237 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
16622, 154, 1653syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐽 = (MetOpen‘𝐷))
167166adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐽 = (MetOpen‘𝐷))
168167fveq2d 6182 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘𝐷)))
169164, 168eleqtrrd 2702 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘𝐽))
170 cldcls 20827 . . . . . . . . . . . . 13 ({𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
171169, 170syl 17 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷𝑃)) → ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
172153, 171eleqtrd 2701 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
173 oveq2 6643 . . . . . . . . . . . . . 14 (𝑦 = 𝑃 → (𝐴𝐷𝑦) = (𝐴𝐷𝑃))
174173breq1d 4654 . . . . . . . . . . . . 13 (𝑦 = 𝑃 → ((𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
175174elrab 3357 . . . . . . . . . . . 12 (𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ↔ (𝑃𝑋 ∧ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
176175simprbi 480 . . . . . . . . . . 11 (𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} → (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
177172, 176syl 17 . . . . . . . . . 10 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
17832, 34, 32leadd2d 10607 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐷𝑃) ≤ 𝑆 ↔ ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆)))
17932recnd 10053 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐷𝑃) ∈ ℂ)
1801792timesd 11260 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴𝐷𝑃)) = ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)))
181180breq1d 4654 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆)))
182 lemuldiv2 10889 . . . . . . . . . . . . . 14 (((𝐴𝐷𝑃) ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
18379, 182mp3an3 1411 . . . . . . . . . . . . 13 (((𝐴𝐷𝑃) ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
18432, 67, 183syl2anc 692 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
185178, 181, 1843bitr2d 296 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐷𝑃) ≤ 𝑆 ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
186185biimpar 502 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) → (𝐴𝐷𝑃) ≤ 𝑆)
187177, 186syldan 487 . . . . . . . . 9 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐴𝐷𝑃) ≤ 𝑆)
188187ex 450 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷𝑃) → (𝐴𝐷𝑃) ≤ 𝑆))
18949, 188sylbird 250 . . . . . . 7 (𝜑 → (¬ (𝐴𝐷𝑃) ≤ 𝑆 → (𝐴𝐷𝑃) ≤ 𝑆))
190189pm2.18d 124 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) ≤ 𝑆)
191190adantr 481 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ≤ 𝑆)
19286adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑅 ⊆ ℝ)
19392adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
194 simpr 477 . . . . . . . . 9 ((𝜑𝑦𝑌) → 𝑦𝑌)
195 fvex 6188 . . . . . . . . 9 (𝑁‘(𝐴 𝑦)) ∈ V
196 eqid 2620 . . . . . . . . . 10 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
197196elrnmpt1 5363 . . . . . . . . 9 ((𝑦𝑌 ∧ (𝑁‘(𝐴 𝑦)) ∈ V) → (𝑁‘(𝐴 𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))))
198194, 195, 197sylancl 693 . . . . . . . 8 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))))
199198, 10syl6eleqr 2710 . . . . . . 7 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ 𝑅)
200 infrelb 10993 . . . . . . 7 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴 𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 𝑦)))
201192, 193, 199, 200syl3anc 1324 . . . . . 6 ((𝜑𝑦𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 𝑦)))
20211, 201syl5eqbr 4679 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ≤ (𝑁‘(𝐴 𝑦)))
20333, 35, 48, 191, 202letrd 10179 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ≤ (𝑁‘(𝐴 𝑦)))
20427, 203eqbrtrrd 4668 . . 3 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦)))
205204ralrimiva 2963 . 2 (𝜑 → ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦)))
206 oveq2 6643 . . . . . 6 (𝑥 = 𝑃 → (𝐴 𝑥) = (𝐴 𝑃))
207206fveq2d 6182 . . . . 5 (𝑥 = 𝑃 → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 𝑃)))
208207breq1d 4654 . . . 4 (𝑥 = 𝑃 → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))))
209208ralbidv 2983 . . 3 (𝑥 = 𝑃 → (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))))
210209rspcev 3304 . 2 ((𝑃𝑌 ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
21116, 205, 210syl2anc 692 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  {crab 2913  Vcvv 3195  cin 3566  wss 3567  c0 3907  𝒫 cpw 4149   cuni 4427   class class class wbr 4644  cmpt 4720   × cxp 5102  ran crn 5105  cres 5106  cfv 5876  (class class class)co 6635  infcinf 8332  cr 9920  0cc0 9921   + caddc 9924   · cmul 9926  *cxr 10058   < clt 10059  cle 10060  cmin 10251   / cdiv 10669  2c2 11055  +crp 11817  cexp 12843  Basecbs 15838  s cress 15839  distcds 15931  TopOpenctopn 16063  -gcsg 17405  LModclmod 18844  LSubSpclss 18913  ∞Metcxmt 19712  Metcme 19713  fBascfbas 19715  filGencfg 19716  MetOpencmopn 19717  Clsdccld 20801  clsccl 20803  Filcfil 21630   fLim cflim 21719  ∞MetSpcxme 22103  MetSpcmt 22104  normcnm 22362  NrmGrpcngp 22363  ℂPreHilccph 22947  CMetSpccms 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fi 8302  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ico 12166  df-icc 12167  df-fz 12312  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-rest 16064  df-0g 16083  df-topgen 16085  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-grp 17406  df-minusg 17407  df-sbg 17408  df-mulg 17522  df-subg 17572  df-ghm 17639  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-dvr 18664  df-rnghom 18696  df-drng 18730  df-subrg 18759  df-staf 18826  df-srng 18827  df-lmod 18846  df-lss 18914  df-lmhm 19003  df-lvec 19084  df-sra 19153  df-rgmod 19154  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-phl 19952  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-haus 21100  df-fil 21631  df-flim 21724  df-xms 22106  df-ms 22107  df-nm 22368  df-ngp 22369  df-nlm 22372  df-clm 22844  df-cph 22949  df-cfil 23034  df-cmet 23036  df-cms 23113
This theorem is referenced by:  minveclem5  23185
  Copyright terms: Public domain W3C validator