MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4a Structured version   Visualization version   GIF version

Theorem minveclem4a 24027
Description: Lemma for minvec 24033. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
Assertion
Ref Expression
minveclem4a (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝑃   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 minvec.p . 2 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
2 ovex 7183 . . . . 5 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
32uniex 7461 . . . 4 (𝐽 fLim (𝑋filGen𝐹)) ∈ V
43snid 4595 . . 3 (𝐽 fLim (𝑋filGen𝐹)) ∈ { (𝐽 fLim (𝑋filGen𝐹))}
5 minvec.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂPreHil)
6 cphngp 23771 . . . . . . . . . . . 12 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
7 ngpxms 23204 . . . . . . . . . . . 12 (𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp)
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑𝑈 ∈ ∞MetSp)
9 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
10 minvec.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑈)
11 minvec.d . . . . . . . . . . . 12 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
129, 10, 11xmstopn 23055 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐽 = (MetOpen‘𝐷))
1413oveq1d 7165 . . . . . . . . 9 (𝜑 → (𝐽t 𝑌) = ((MetOpen‘𝐷) ↾t 𝑌))
1510, 11xmsxmet 23060 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
168, 15syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (∞Met‘𝑋))
17 minvec.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (LSubSp‘𝑈))
18 eqid 2821 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1910, 18lssss 19702 . . . . . . . . . . 11 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
2017, 19syl 17 . . . . . . . . . 10 (𝜑𝑌𝑋)
21 eqid 2821 . . . . . . . . . . 11 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
22 eqid 2821 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
23 eqid 2821 . . . . . . . . . . 11 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
2421, 22, 23metrest 23128 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2516, 20, 24syl2anc 586 . . . . . . . . 9 (𝜑 → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2614, 25eqtr2d 2857 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽t 𝑌))
27 minvec.m . . . . . . . . . . . 12 = (-g𝑈)
28 minvec.n . . . . . . . . . . . 12 𝑁 = (norm‘𝑈)
29 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
30 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
31 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
32 minvec.s . . . . . . . . . . . 12 𝑆 = inf(𝑅, ℝ, < )
33 minvec.f . . . . . . . . . . . 12 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
3410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3b 24025 . . . . . . . . . . 11 (𝜑𝐹 ∈ (fBas‘𝑌))
35 fgcl 22480 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ∈ (Fil‘𝑌))
3710fvexi 6679 . . . . . . . . . . 11 𝑋 ∈ V
3837a1i 11 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
39 trfg 22493 . . . . . . . . . 10 (((𝑌filGen𝐹) ∈ (Fil‘𝑌) ∧ 𝑌𝑋𝑋 ∈ V) → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
4036, 20, 38, 39syl3anc 1367 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹))
41 fgabs 22481 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4234, 20, 41syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
4342oveq1d 7165 . . . . . . . . 9 (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = ((𝑋filGen𝐹) ↾t 𝑌))
4440, 43eqtr3d 2858 . . . . . . . 8 (𝜑 → (𝑌filGen𝐹) = ((𝑋filGen𝐹) ↾t 𝑌))
4526, 44oveq12d 7168 . . . . . . 7 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)))
46 xmstps 23057 . . . . . . . . . 10 (𝑈 ∈ ∞MetSp → 𝑈 ∈ TopSp)
478, 46syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ TopSp)
4810, 9istps 21536 . . . . . . . . 9 (𝑈 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
4947, 48sylib 220 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
50 fbsspw 22434 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
5134, 50syl 17 . . . . . . . . . . 11 (𝜑𝐹 ⊆ 𝒫 𝑌)
52 sspwb 5334 . . . . . . . . . . . 12 (𝑌𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋)
5320, 52sylib 220 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋)
5451, 53sstrd 3977 . . . . . . . . . 10 (𝜑𝐹 ⊆ 𝒫 𝑋)
55 fbasweak 22467 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
5634, 54, 38, 55syl3anc 1367 . . . . . . . . 9 (𝜑𝐹 ∈ (fBas‘𝑋))
57 fgcl 22480 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
5856, 57syl 17 . . . . . . . 8 (𝜑 → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
59 filfbas 22450 . . . . . . . . . . . . 13 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
6034, 35, 593syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑌))
61 fbsspw 22434 . . . . . . . . . . . . . 14 ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6260, 61syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑌)
6362, 53sstrd 3977 . . . . . . . . . . . 12 (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑋)
64 fbasweak 22467 . . . . . . . . . . . 12 (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
6560, 63, 38, 64syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑋))
66 ssfg 22474 . . . . . . . . . . 11 ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6765, 66syl 17 . . . . . . . . . 10 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹)))
6867, 42sseqtrd 4007 . . . . . . . . 9 (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen𝐹))
69 filtop 22457 . . . . . . . . . 10 ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐹))
7036, 69syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ (𝑌filGen𝐹))
7168, 70sseldd 3968 . . . . . . . 8 (𝜑𝑌 ∈ (𝑋filGen𝐹))
72 flimrest 22585 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝐹)) → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7349, 58, 71, 72syl3anc 1367 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7445, 73eqtrd 2856 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
7510, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11minveclem3a 24024 . . . . . . 7 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
7610, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3 24026 . . . . . . 7 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
7723cmetcvg 23882 . . . . . . 7 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7875, 76, 77syl2anc 586 . . . . . 6 (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅)
7974, 78eqnetrrd 3084 . . . . 5 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅)
8079neneqd 3021 . . . 4 (𝜑 → ¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅)
81 inss1 4205 . . . . . . 7 ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹))
8222methaus 23124 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ Haus)
8315, 82syl 17 . . . . . . . . . . . 12 (𝑈 ∈ ∞MetSp → (MetOpen‘𝐷) ∈ Haus)
8412, 83eqeltrd 2913 . . . . . . . . . . 11 (𝑈 ∈ ∞MetSp → 𝐽 ∈ Haus)
85 hausflimi 22582 . . . . . . . . . . 11 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
868, 84, 853syl 18 . . . . . . . . . 10 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
87 ssn0 4354 . . . . . . . . . . . 12 ((((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) ∧ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
8881, 79, 87sylancr 589 . . . . . . . . . . 11 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅)
89 n0moeu 4316 . . . . . . . . . . 11 ((𝐽 fLim (𝑋filGen𝐹)) ≠ ∅ → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
9088, 89syl 17 . . . . . . . . . 10 (𝜑 → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))))
9186, 90mpbid 234 . . . . . . . . 9 (𝜑 → ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
92 euen1b 8574 . . . . . . . . 9 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))
9391, 92sylibr 236 . . . . . . . 8 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≈ 1o)
94 en1b 8571 . . . . . . . 8 ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1o ↔ (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9593, 94sylib 220 . . . . . . 7 (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) = { (𝐽 fLim (𝑋filGen𝐹))})
9681, 95sseqtrid 4019 . . . . . 6 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))})
97 sssn 4753 . . . . . 6 (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ { (𝐽 fLim (𝑋filGen𝐹))} ↔ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9896, 97sylib 220 . . . . 5 (𝜑 → (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
9998ord 860 . . . 4 (𝜑 → (¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))}))
10080, 99mpd 15 . . 3 (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = { (𝐽 fLim (𝑋filGen𝐹))})
1014, 100eleqtrrid 2920 . 2 (𝜑 (𝐽 fLim (𝑋filGen𝐹)) ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
1021, 101eqeltrid 2917 1 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wo 843   = wceq 1533  wcel 2110  ∃*wmo 2616  ∃!weu 2649  wne 3016  {crab 3142  Vcvv 3495  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4561   cuni 4832   class class class wbr 5059  cmpt 5139   × cxp 5548  ran crn 5551  cres 5552  cfv 6350  (class class class)co 7150  1oc1o 8089  cen 8500  infcinf 8899  cr 10530   + caddc 10534   < clt 10669  cle 10670  2c2 11686  +crp 12383  cexp 13423  Basecbs 16477  s cress 16478  distcds 16568  t crest 16688  TopOpenctopn 16689  -gcsg 18099  LSubSpclss 19697  ∞Metcxmet 20524  fBascfbas 20527  filGencfg 20528  MetOpencmopn 20529  TopOnctopon 21512  TopSpctps 21534  Hauscha 21910  Filcfil 22447   fLim cflim 22536  ∞MetSpcxms 22921  normcnm 23180  NrmGrpcngp 23181  ℂPreHilccph 23764  CauFilccfil 23849  CMetccmet 23851  CMetSpccms 23929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-icc 12739  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-0g 16709  df-topgen 16711  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-subrg 19527  df-staf 19610  df-srng 19611  df-lmod 19630  df-lss 19698  df-lmhm 19788  df-lvec 19869  df-sra 19938  df-rgmod 19939  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-phl 20764  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-ntr 21622  df-nei 21700  df-haus 21917  df-fil 22448  df-flim 22541  df-xms 22924  df-ms 22925  df-nm 23186  df-ngp 23187  df-nlm 23190  df-clm 23661  df-cph 23766  df-cfil 23852  df-cmet 23854  df-cms 23932
This theorem is referenced by:  minveclem4b  24028  minveclem4  24029
  Copyright terms: Public domain W3C validator