MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem5 Structured version   Visualization version   GIF version

Theorem minvecolem5 28657
Description: Lemma for minveco 28660. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 9856. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem5 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem5
Dummy variables 𝑛 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnrecgt0 11679 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < (1 / 𝑛))
21adantl 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 < (1 / 𝑛))
3 nnrecre 11678 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 minveco.s . . . . . . . . . . . . . 14 𝑆 = inf(𝑅, ℝ, < )
6 minveco.x . . . . . . . . . . . . . . . . . 18 𝑋 = (BaseSet‘𝑈)
7 minveco.m . . . . . . . . . . . . . . . . . 18 𝑀 = ( −𝑣𝑈)
8 minveco.n . . . . . . . . . . . . . . . . . 18 𝑁 = (normCV𝑈)
9 minveco.y . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
10 minveco.u . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ CPreHilOLD)
11 minveco.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
12 minveco.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑋)
13 minveco.d . . . . . . . . . . . . . . . . . 18 𝐷 = (IndMet‘𝑈)
14 minveco.j . . . . . . . . . . . . . . . . . 18 𝐽 = (MetOpen‘𝐷)
15 minveco.r . . . . . . . . . . . . . . . . . 18 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
166, 7, 8, 9, 10, 11, 12, 13, 14, 15minvecolem1 28650 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1716adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1817simp1d 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ⊆ ℝ)
1917simp2d 1139 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ≠ ∅)
20 0re 10642 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
2117simp3d 1140 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ∀𝑤𝑅 0 ≤ 𝑤)
22 breq1 5068 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
2322ralbidv 3197 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2423rspcev 3622 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2520, 21, 24sylancr 589 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
26 infrecl 11622 . . . . . . . . . . . . . . 15 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2718, 19, 25, 26syl3anc 1367 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → inf(𝑅, ℝ, < ) ∈ ℝ)
285, 27eqeltrid 2917 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
2928resqcld 13610 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) ∈ ℝ)
304, 29ltaddposd 11223 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0 < (1 / 𝑛) ↔ (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛))))
312, 30mpbid 234 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛)))
3229, 4readdcld 10669 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
3328sqge0d 13611 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑆↑2))
3429, 4, 33, 2addgegt0d 11212 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 < ((𝑆↑2) + (1 / 𝑛)))
3532, 34elrpd 12427 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ+)
3635rpge0d 12434 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((𝑆↑2) + (1 / 𝑛)))
37 resqrtth 14614 . . . . . . . . . . 11 ((((𝑆↑2) + (1 / 𝑛)) ∈ ℝ ∧ 0 ≤ ((𝑆↑2) + (1 / 𝑛))) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3832, 36, 37syl2anc 586 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3931, 38breqtrrd 5093 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2))
4035rpsqrtcld 14770 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ+)
4140rpred 12430 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
42 0red 10643 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
43 infregelb 11624 . . . . . . . . . . . . 13 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4418, 19, 25, 42, 43syl31anc 1369 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4521, 44mpbird 259 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ inf(𝑅, ℝ, < ))
4645, 5breqtrrdi 5107 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑆)
4732, 36sqrtge0d 14779 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
4828, 41, 46, 47lt2sqd 13618 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2)))
4939, 48mpbird 259 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))))
5028, 41ltnled 10786 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆))
5149, 50mpbid 234 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆)
525breq2i 5073 . . . . . . . . 9 ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ))
53 infregelb 11624 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5418, 19, 25, 41, 53syl31anc 1369 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5552, 54syl5bb 285 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5615raleqi 3413 . . . . . . . . 9 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤)
57 fvex 6682 . . . . . . . . . . 11 (𝑁‘(𝐴𝑀𝑦)) ∈ V
5857rgenw 3150 . . . . . . . . . 10 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
59 eqid 2821 . . . . . . . . . . 11 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
60 breq2 5069 . . . . . . . . . . 11 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6159, 60ralrnmptw 6859 . . . . . . . . . 10 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6258, 61ax-mp 5 . . . . . . . . 9 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6356, 62bitri 277 . . . . . . . 8 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6455, 63syl6bb 289 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6551, 64mtbid 326 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
66 rexnal 3238 . . . . . 6 (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6765, 66sylibr 236 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6832adantr 483 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
69 phnv 28590 . . . . . . . . . . . . 13 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
7010, 69syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
7170ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑈 ∈ NrmCVec)
7212ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝐴𝑋)
73 inss1 4204 . . . . . . . . . . . . . . . 16 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
7473, 11sseldi 3964 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ (SubSp‘𝑈))
75 eqid 2821 . . . . . . . . . . . . . . . 16 (SubSp‘𝑈) = (SubSp‘𝑈)
766, 9, 75sspba 28503 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
7770, 74, 76syl2anc 586 . . . . . . . . . . . . . 14 (𝜑𝑌𝑋)
7877adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑌𝑋)
7978sselda 3966 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑦𝑋)
806, 7nvmcl 28422 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
8171, 72, 79, 80syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
826, 8nvcl 28437 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8371, 81, 82syl2anc 586 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8483resqcld 13610 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑁‘(𝐴𝑀𝑦))↑2) ∈ ℝ)
8568, 84letrid 10791 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ∨ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8685ord 860 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) → ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8741adantr 483 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
8847adantr 483 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
896, 8nvge0 28449 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9071, 81, 89syl2anc 586 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9187, 83, 88, 90le2sqd 13619 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9238adantr 483 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
9392breq1d 5075 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9491, 93bitrd 281 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9594notbid 320 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
966, 7, 8, 13imsdval 28462 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9771, 72, 79, 96syl3anc 1367 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9897oveq1d 7170 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦)↑2) = ((𝑁‘(𝐴𝑀𝑦))↑2))
9998breq1d 5075 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10086, 95, 993imtr4d 296 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
101100reximdva 3274 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10267, 101mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
103102ralrimiva 3182 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
1049fvexi 6683 . . . 4 𝑌 ∈ V
105 nnenom 13347 . . . 4 ℕ ≈ ω
106 oveq2 7163 . . . . . 6 (𝑦 = (𝑓𝑛) → (𝐴𝐷𝑦) = (𝐴𝐷(𝑓𝑛)))
107106oveq1d 7170 . . . . 5 (𝑦 = (𝑓𝑛) → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷(𝑓𝑛))↑2))
108107breq1d 5075 . . . 4 (𝑦 = (𝑓𝑛) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
109104, 105, 108axcc4 9860 . . 3 (∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
110103, 109syl 17 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
11110adantr 483 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑈 ∈ CPreHilOLD)
11211adantr 483 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
11312adantr 483 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝐴𝑋)
114 simprl 769 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑓:ℕ⟶𝑌)
115 simprr 771 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
116 fveq2 6669 . . . . . . . 8 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
117116oveq2d 7171 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝐷(𝑓𝑛)) = (𝐴𝐷(𝑓𝑘)))
118117oveq1d 7170 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝐷(𝑓𝑛))↑2) = ((𝐴𝐷(𝑓𝑘))↑2))
119 oveq2 7163 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
120119oveq2d 7171 . . . . . 6 (𝑛 = 𝑘 → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / 𝑘)))
121118, 120breq12d 5078 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘))))
122121rspccva 3621 . . . 4 ((∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
123115, 122sylan 582 . . 3 (((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
124 eqid 2821 . . 3 (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2))) = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2)))
1256, 7, 8, 9, 111, 112, 113, 13, 14, 15, 5, 114, 123, 124minvecolem4 28656 . 2 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
126110, 125exlimddv 1932 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cin 3934  wss 3935  c0 4290   class class class wbr 5065  cmpt 5145  ran crn 5555  wf 6350  cfv 6354  (class class class)co 7155  infcinf 8904  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  cexp 13428  csqrt 14591  MetOpencmopn 20534  𝑡clm 21833  NrmCVeccnv 28360  BaseSetcba 28362  𝑣 cnsb 28365  normCVcnmcv 28366  IndMetcims 28367  SubSpcss 28497  CPreHilOLDccphlo 28588  CBanccbn 28638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fi 8874  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ico 12743  df-icc 12744  df-fl 13161  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-rest 16695  df-topgen 16716  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-top 21501  df-topon 21518  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lm 21836  df-haus 21922  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-cfil 23857  df-cau 23858  df-cmet 23859  df-grpo 28269  df-gid 28270  df-ginv 28271  df-gdiv 28272  df-ablo 28321  df-vc 28335  df-nv 28368  df-va 28371  df-ba 28372  df-sm 28373  df-0v 28374  df-vs 28375  df-nmcv 28376  df-ims 28377  df-ssp 28498  df-ph 28589  df-cbn 28639
This theorem is referenced by:  minvecolem7  28659
  Copyright terms: Public domain W3C validator