MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem6 Structured version   Visualization version   GIF version

Theorem minvecolem6 27866
Description: Lemma for minveco 27868. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 27797 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
43adantr 480 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmCVec)
5 minveco.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑥𝑌) → 𝐴𝑋)
7 inss1 3866 . . . . . . . . 9 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
8 minveco.w . . . . . . . . 9 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
97, 8sseldi 3634 . . . . . . . 8 (𝜑𝑊 ∈ (SubSp‘𝑈))
10 minveco.x . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
11 minveco.y . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
12 eqid 2651 . . . . . . . . 9 (SubSp‘𝑈) = (SubSp‘𝑈)
1310, 11, 12sspba 27710 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
143, 9, 13syl2anc 694 . . . . . . 7 (𝜑𝑌𝑋)
1514sselda 3636 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥𝑋)
16 minveco.m . . . . . . 7 𝑀 = ( −𝑣𝑈)
17 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
18 minveco.d . . . . . . 7 𝐷 = (IndMet‘𝑈)
1910, 16, 17, 18imsdval 27669 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
204, 6, 15, 19syl3anc 1366 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
2120oveq1d 6705 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴𝑀𝑥))↑2))
22 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
23 minveco.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2510, 16, 17, 11, 1, 8, 5, 18, 23, 24minvecolem1 27858 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2726simp1d 1093 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
2826simp2d 1094 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
29 0red 10079 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3026simp3d 1095 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
31 breq1 4688 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3231ralbidv 3015 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3332rspcev 3340 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3429, 30, 33syl2anc 694 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
35 infrecl 11043 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3627, 28, 34, 35syl3anc 1366 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
3722, 36syl5eqel 2734 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
3837resqcld 13075 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
3938recnd 10106 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4039addid1d 10274 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4121, 40breq12d 4698 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
4210, 16nvmcl 27629 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝑀𝑥) ∈ 𝑋)
434, 6, 15, 42syl3anc 1366 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝑀𝑥) ∈ 𝑋)
4410, 17nvcl 27644 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
454, 43, 44syl2anc 694 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
4610, 17nvge0 27656 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
474, 43, 46syl2anc 694 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
48 infregelb 11045 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4927, 28, 34, 29, 48syl31anc 1369 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5030, 49mpbird 247 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5150, 22syl6breqr 4727 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5245, 37, 47, 51le2sqd 13084 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
5322breq2i 4693 . . . 4 ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ))
54 infregelb 11045 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5527, 28, 34, 45, 54syl31anc 1369 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5653, 55syl5bb 272 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5741, 52, 563bitr2d 296 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5824raleqi 3172 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤)
59 fvex 6239 . . . . 5 (𝑁‘(𝐴𝑀𝑦)) ∈ V
6059rgenw 2953 . . . 4 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
61 eqid 2651 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
62 breq2 4689 . . . . 5 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6361, 62ralrnmpt 6408 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6460, 63ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6558, 64bitri 264 . 2 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6657, 65syl6bb 276 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607  c0 3948   class class class wbr 4685  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  infcinf 8388  cr 9973  0cc0 9974   + caddc 9977   < clt 10112  cle 10113  2c2 11108  cexp 12900  MetOpencmopn 19784  NrmCVeccnv 27567  BaseSetcba 27569  𝑣 cnsb 27572  normCVcnmcv 27573  IndMetcims 27574  SubSpcss 27704  CPreHilOLDccphlo 27795  CBanccbn 27846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-ssp 27705  df-ph 27796  df-cbn 27847
This theorem is referenced by:  minvecolem7  27867
  Copyright terms: Public domain W3C validator