MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirauto Structured version   Visualization version   GIF version

Theorem mirauto 25486
Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirauto.m 𝑀 = (𝑆𝑇)
mirauto.x 𝑋 = (𝑀𝐴)
mirauto.y 𝑌 = (𝑀𝐵)
mirauto.z 𝑍 = (𝑀𝐶)
mirauto.0 (𝜑𝑇𝑃)
mirauto.1 (𝜑𝐴𝑃)
mirauto.2 (𝜑𝐵𝑃)
mirauto.3 (𝜑𝐶𝑃)
mirauto.4 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
Assertion
Ref Expression
mirauto (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)

Proof of Theorem mirauto
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirauto.x . . . 4 𝑋 = (𝑀𝐴)
8 mirauto.0 . . . . . 6 (𝜑𝑇𝑃)
9 mirauto.m . . . . . 6 𝑀 = (𝑆𝑇)
101, 2, 3, 4, 5, 6, 8, 9mirf 25462 . . . . 5 (𝜑𝑀:𝑃𝑃)
11 mirauto.1 . . . . 5 (𝜑𝐴𝑃)
1210, 11ffvelrnd 6318 . . . 4 (𝜑 → (𝑀𝐴) ∈ 𝑃)
137, 12syl5eqel 2702 . . 3 (𝜑𝑋𝑃)
14 eqid 2621 . . 3 (𝑆𝑋) = (𝑆𝑋)
15 mirauto.y . . . 4 𝑌 = (𝑀𝐵)
16 mirauto.2 . . . . 5 (𝜑𝐵𝑃)
1710, 16ffvelrnd 6318 . . . 4 (𝜑 → (𝑀𝐵) ∈ 𝑃)
1815, 17syl5eqel 2702 . . 3 (𝜑𝑌𝑃)
19 mirauto.z . . . 4 𝑍 = (𝑀𝐶)
20 mirauto.3 . . . . 5 (𝜑𝐶𝑃)
2110, 20ffvelrnd 6318 . . . 4 (𝜑 → (𝑀𝐶) ∈ 𝑃)
2219, 21syl5eqel 2702 . . 3 (𝜑𝑍𝑃)
23 mirauto.4 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
2423, 20eqeltrd 2698 . . . . 5 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
25 eqid 2621 . . . . . 6 (𝑆𝐴) = (𝑆𝐴)
261, 2, 3, 4, 5, 6, 11, 25, 16mircgr 25459 . . . . 5 (𝜑 → (𝐴 ((𝑆𝐴)‘𝐵)) = (𝐴 𝐵))
271, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26mircgrs 25475 . . . 4 (𝜑 → ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))) = ((𝑀𝐴) (𝑀𝐵)))
287a1i 11 . . . . 5 (𝜑𝑋 = (𝑀𝐴))
2923fveq2d 6154 . . . . . 6 (𝜑 → (𝑀‘((𝑆𝐴)‘𝐵)) = (𝑀𝐶))
3029, 19syl6reqr 2674 . . . . 5 (𝜑𝑍 = (𝑀‘((𝑆𝐴)‘𝐵)))
3128, 30oveq12d 6625 . . . 4 (𝜑 → (𝑋 𝑍) = ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))))
327, 15oveq12i 6619 . . . . 5 (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵))
3332a1i 11 . . . 4 (𝜑 → (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵)))
3427, 31, 333eqtr4d 2665 . . 3 (𝜑 → (𝑋 𝑍) = (𝑋 𝑌))
351, 2, 3, 4, 5, 6, 11, 25, 16mirbtwn 25460 . . . . . 6 (𝜑𝐴 ∈ (((𝑆𝐴)‘𝐵)𝐼𝐵))
3623oveq1d 6622 . . . . . 6 (𝜑 → (((𝑆𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵))
3735, 36eleqtrd 2700 . . . . 5 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
381, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37mirbtwni 25473 . . . 4 (𝜑 → (𝑀𝐴) ∈ ((𝑀𝐶)𝐼(𝑀𝐵)))
3919, 15oveq12i 6619 . . . 4 (𝑍𝐼𝑌) = ((𝑀𝐶)𝐼(𝑀𝐵))
4038, 7, 393eltr4g 2715 . . 3 (𝜑𝑋 ∈ (𝑍𝐼𝑌))
411, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40ismir 25461 . 2 (𝜑𝑍 = ((𝑆𝑋)‘𝑌))
4241eqcomd 2627 1 (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cfv 5849  (class class class)co 6607  Basecbs 15784  distcds 15874  TarskiGcstrkg 25236  Itvcitv 25242  LineGclng 25243  pInvGcmir 25454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-pm 7808  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-xnn0 11311  df-z 11325  df-uz 11635  df-fz 12272  df-fzo 12410  df-hash 13061  df-word 13241  df-concat 13243  df-s1 13244  df-s2 13533  df-s3 13534  df-trkgc 25254  df-trkgb 25255  df-trkgcb 25256  df-trkg 25259  df-cgrg 25313  df-mir 25455
This theorem is referenced by:  miduniq2  25489  krippenlem  25492
  Copyright terms: Public domain W3C validator