MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirf1o Structured version   Visualization version   GIF version

Theorem mirf1o 26457
Description: The point inversion function 𝑀 is a bijection. Theorem 7.11 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mirf1o (𝜑𝑀:𝑃1-1-onto𝑃)

Proof of Theorem mirf1o
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.d . . . 4 = (dist‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
5 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . . 4 (𝜑𝐴𝑃)
8 mirfv.m . . . 4 𝑀 = (𝑆𝐴)
91, 2, 3, 4, 5, 6, 7, 8mirf 26448 . . 3 (𝜑𝑀:𝑃𝑃)
109ffnd 6517 . 2 (𝜑𝑀 Fn 𝑃)
116adantr 483 . . . . 5 ((𝜑𝑎𝑃) → 𝐺 ∈ TarskiG)
127adantr 483 . . . . 5 ((𝜑𝑎𝑃) → 𝐴𝑃)
13 simpr 487 . . . . 5 ((𝜑𝑎𝑃) → 𝑎𝑃)
141, 2, 3, 4, 5, 11, 12, 8, 13mirmir 26450 . . . 4 ((𝜑𝑎𝑃) → (𝑀‘(𝑀𝑎)) = 𝑎)
1514ralrimiva 3184 . . 3 (𝜑 → ∀𝑎𝑃 (𝑀‘(𝑀𝑎)) = 𝑎)
16 nvocnv 7040 . . 3 ((𝑀:𝑃𝑃 ∧ ∀𝑎𝑃 (𝑀‘(𝑀𝑎)) = 𝑎) → 𝑀 = 𝑀)
179, 15, 16syl2anc 586 . 2 (𝜑𝑀 = 𝑀)
18 nvof1o 7039 . 2 ((𝑀 Fn 𝑃𝑀 = 𝑀) → 𝑀:𝑃1-1-onto𝑃)
1910, 17, 18syl2anc 586 1 (𝜑𝑀:𝑃1-1-onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  ccnv 5556   Fn wfn 6352  wf 6353  1-1-ontowf1o 6356  cfv 6357  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224  LineGclng 26225  pInvGcmir 26440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkg 26241  df-mir 26441
This theorem is referenced by:  mirmot  26463
  Copyright terms: Public domain W3C validator