MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirmid Structured version   Visualization version   GIF version

Theorem mirmid 25669
Description: Point inversion preserves midpoints. (Contributed by Thierry Arnoux, 12-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
midcl.1 (𝜑𝐴𝑃)
midcl.2 (𝜑𝐵𝑃)
mirmid.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
mirmid.x (𝜑𝑀𝑃)
Assertion
Ref Expression
mirmid (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆𝐵)) = (𝑆‘(𝐴(midG‘𝐺)𝐵)))

Proof of Theorem mirmid
StepHypRef Expression
1 eqidd 2622 . . . . 5 (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐴(midG‘𝐺)𝐵))
2 ismid.p . . . . . 6 𝑃 = (Base‘𝐺)
3 ismid.d . . . . . 6 = (dist‘𝐺)
4 ismid.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 ismid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
6 ismid.1 . . . . . 6 (𝜑𝐺DimTarskiG≥2)
7 midcl.1 . . . . . 6 (𝜑𝐴𝑃)
8 midcl.2 . . . . . 6 (𝜑𝐵𝑃)
9 eqid 2621 . . . . . 6 (pInvG‘𝐺) = (pInvG‘𝐺)
102, 3, 4, 5, 6, 7, 8midcl 25663 . . . . . 6 (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝑃)
112, 3, 4, 5, 6, 7, 8, 9, 10ismidb 25664 . . . . 5 (𝜑 → (𝐵 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = (𝐴(midG‘𝐺)𝐵)))
121, 11mpbird 247 . . . 4 (𝜑𝐵 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴))
1312fveq2d 6193 . . 3 (𝜑 → (𝑆𝐵) = (𝑆‘(((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)))
14 eqid 2621 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
15 mirmid.x . . . 4 (𝜑𝑀𝑃)
16 mirmid.s . . . 4 𝑆 = ((pInvG‘𝐺)‘𝑀)
172, 3, 4, 14, 9, 5, 15, 16, 7, 10mirmir2 25563 . . 3 (𝜑 → (𝑆‘(((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)) = (((pInvG‘𝐺)‘(𝑆‘(𝐴(midG‘𝐺)𝐵)))‘(𝑆𝐴)))
1813, 17eqtrd 2655 . 2 (𝜑 → (𝑆𝐵) = (((pInvG‘𝐺)‘(𝑆‘(𝐴(midG‘𝐺)𝐵)))‘(𝑆𝐴)))
192, 3, 4, 14, 9, 5, 15, 16, 7mircl 25550 . . 3 (𝜑 → (𝑆𝐴) ∈ 𝑃)
202, 3, 4, 14, 9, 5, 15, 16, 8mircl 25550 . . 3 (𝜑 → (𝑆𝐵) ∈ 𝑃)
212, 3, 4, 14, 9, 5, 15, 16, 10mircl 25550 . . 3 (𝜑 → (𝑆‘(𝐴(midG‘𝐺)𝐵)) ∈ 𝑃)
222, 3, 4, 5, 6, 19, 20, 9, 21ismidb 25664 . 2 (𝜑 → ((𝑆𝐵) = (((pInvG‘𝐺)‘(𝑆‘(𝐴(midG‘𝐺)𝐵)))‘(𝑆𝐴)) ↔ ((𝑆𝐴)(midG‘𝐺)(𝑆𝐵)) = (𝑆‘(𝐴(midG‘𝐺)𝐵))))
2318, 22mpbid 222 1 (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆𝐵)) = (𝑆‘(𝐴(midG‘𝐺)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1482  wcel 1989   class class class wbr 4651  cfv 5886  (class class class)co 6647  2c2 11067  Basecbs 15851  distcds 15944  TarskiGcstrkg 25323  DimTarskiGcstrkgld 25327  Itvcitv 25329  LineGclng 25330  pInvGcmir 25541  midGcmid 25658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-card 8762  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-n0 11290  df-xnn0 11361  df-z 11375  df-uz 11685  df-fz 12324  df-fzo 12462  df-hash 13113  df-word 13294  df-concat 13296  df-s1 13297  df-s2 13587  df-s3 13588  df-trkgc 25341  df-trkgb 25342  df-trkgcb 25343  df-trkgld 25345  df-trkg 25346  df-cgrg 25400  df-leg 25472  df-mir 25542  df-rag 25583  df-perpg 25585  df-mid 25660
This theorem is referenced by:  lmiisolem  25682
  Copyright terms: Public domain W3C validator