HomeHome Metamath Proof Explorer
Theorem List (p. 102 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27745)
  Hilbert Space Explorer  Hilbert Space Explorer
(27746-29270)
  Users' Mathboxes  Users' Mathboxes
(29271-42316)
 

Theorem List for Metamath Proof Explorer - 10101-10200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlenlt 10101 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltnle 10102 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
 
Theoremltso 10103 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
< Or ℝ
 
Theoremgtso 10104 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
< Or ℝ
 
Theoremlttri2 10105 Consequence of trichotomy. (Contributed by NM, 9-Oct-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremlttri3 10106 Trichotomy law for 'less than'. (Contributed by NM, 5-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremlttri4 10107 Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
 
Theoremletri3 10108 Trichotomy law. (Contributed by NM, 14-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremleloe 10109 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
 
Theoremeqlelt 10110 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
 
Theoremltle 10111 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
 
Theoremleltne 10112 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by NM, 27-Jul-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
 
Theoremlelttr 10113 Transitive law. (Contributed by NM, 23-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremltletr 10114 Transitive law. (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
 
Theoremltleletr 10115 Transitive law, weaker form of ltletr 10114. (Contributed by AV, 14-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremletr 10116 Transitive law. (Contributed by NM, 12-Nov-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremltnr 10117 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Theoremleid 10118 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → 𝐴𝐴)
 
Theoremltne 10119 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
 
Theoremltnsym 10120 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
 
Theoremltnsym2 10121 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
 
Theoremletric 10122 Trichotomy law. (Contributed by NM, 18-Aug-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
 
Theoremltlen 10123 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremeqle 10124 Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
 
Theoremeqled 10125 Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑𝐴𝐵)
 
Theoremltadd2 10126 Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremne0gt0 10127 A nonzero nonnegative number is positive. (Contributed by NM, 20-Nov-2007.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴))
 
Theoremlecasei 10128 Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   ((𝜑𝐴𝐵) → 𝜓)    &   ((𝜑𝐵𝐴) → 𝜓)       (𝜑𝜓)
 
Theoremlelttric 10129 Trichotomy law. (Contributed by NM, 4-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))
 
Theoremltlecasei 10130 Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝜑𝐴 < 𝐵) → 𝜓)    &   ((𝜑𝐵𝐴) → 𝜓)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑𝜓)
 
Theoremltnri 10131 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℝ        ¬ 𝐴 < 𝐴
 
Theoremeqlei 10132 Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐴 = 𝐵𝐴𝐵)
 
Theoremeqlei2 10133 Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐵 = 𝐴𝐵𝐴)
 
Theoremgtneii 10134 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013.)
𝐴 ∈ ℝ    &   𝐴 < 𝐵       𝐵𝐴
 
Theoremltneii 10135 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.)
𝐴 ∈ ℝ    &   𝐴 < 𝐵       𝐴𝐵
 
Theoremlttri2i 10136 Consequence of trichotomy. (Contributed by NM, 19-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴))
 
Theoremlttri3i 10137 Consequence of trichotomy. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
 
Theoremletri3i 10138 Consequence of trichotomy. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
 
Theoremleloei 10139 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵))
 
Theoremltleni 10140 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴))
 
Theoremltnsymi 10141 'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)
 
Theoremlenlti 10142 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)
 
Theoremltnlei 10143 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴)
 
Theoremltlei 10144 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐴𝐵)
 
Theoremltleii 10145 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐴𝐵
 
Theoremltnei 10146 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐵𝐴)
 
Theoremletrii 10147 Trichotomy law for 'less than or equal to'. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵𝐵𝐴)
 
Theoremlttri 10148 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
 
Theoremlelttri 10149 'Less than or equal to', 'less than' transitive law. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
 
Theoremltletri 10150 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)
 
Theoremletri 10151 'Less than or equal to' is transitive. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremle2tri3i 10152 Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
 
Theoremltadd2i 10153 Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997.) (Proof shortened by OpenAI, 25-Mar-2020.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))
 
Theoremmulgt0i 10154 The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
 
Theoremmulgt0ii 10155 The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐴    &   0 < 𝐵       0 < (𝐴 · 𝐵)
 
Theoremltnrd 10156 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → ¬ 𝐴 < 𝐴)
 
Theoremgtned 10157 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐵𝐴)
 
Theoremltned 10158 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremne0gt0d 10159 A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 ≠ 0)       (𝜑 → 0 < 𝐴)
 
Theoremlttrid 10160 Ordering on reals satisfies strict trichotomy. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
 
Theoremlttri2d 10161 Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremlttri3d 10162 Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremlttri4d 10163 Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
 
Theoremletri3d 10164 Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremleloed 10165 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
 
Theoremeqleltd 10166 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
 
Theoremltlend 10167 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremlenltd 10168 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltnled 10169 'Less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
 
Theoremltled 10170 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremltnsymd 10171 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → ¬ 𝐵 < 𝐴)
 
Theoremnltled 10172 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ¬ 𝐵 < 𝐴)       (𝜑𝐴𝐵)
 
Theoremlensymd 10173 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → ¬ 𝐵 < 𝐴)
 
Theoremletrid 10174 Trichotomy law for 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵𝐵𝐴))
 
Theoremleltned 10175 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 < 𝐵𝐵𝐴))
 
Theoremleneltd 10176 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐴)       (𝜑𝐴 < 𝐵)
 
Theoremmulgt0d 10177 The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 · 𝐵))
 
Theoremltadd2d 10178 Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremletrd 10179 Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremlelttrd 10180 Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremltadd2dd 10181 Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵))
 
Theoremltletrd 10182 Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremlttrd 10183 Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremlelttrdi 10184 If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
(𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))    &   (𝜑𝐵𝐶)       (𝜑 → (𝐴 < 𝐵𝐴 < 𝐶))
 
Theoremdedekind 10185* The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 9999 with appropriate adjustments, states that, if 𝐴 completely preceeds 𝐵, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.)
((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
 
Theoremdedekindle 10186* The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.)
((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
 
5.2.5  Initial properties of the complex numbers
 
Theoremmul12 10187 Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
 
Theoremmul32 10188 Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
 
Theoremmul31 10189 Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
 
Theoremmul4 10190 Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
 
Theoremmuladd11 10191 A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
 
Theorem1p1times 10192 Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
 
Theorempeano2cn 10193 A theorem for complex numbers analogous the second Peano postulate peano2nn 11017. (Contributed by NM, 17-Aug-2005.)
(𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
 
Theorempeano2re 10194 A theorem for reals analogous the second Peano postulate peano2nn 11017. (Contributed by NM, 5-Jul-2005.)
(𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
 
Theoremreaddcan 10195 Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))
 
Theorem00id 10196 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
(0 + 0) = 0
 
Theoremmul02lem1 10197 Lemma for mul02 10199. If any real does not produce 0 when multiplied by 0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.)
(((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))
 
Theoremmul02lem2 10198 Lemma for mul02 10199. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℝ → (0 · 𝐴) = 0)
 
Theoremmul02 10199 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (0 · 𝐴) = 0)
 
Theoremmul01 10200 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (𝐴 · 0) = 0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42316
  Copyright terms: Public domain < Previous  Next >