![]() |
Metamath
Proof Explorer Theorem List (p. 116 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | zeo 11501 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
Theorem | zeo2 11502 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
Theorem | peano2uz2 11503* | Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) | ||
Theorem | peano5uzi 11504* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.) |
⊢ 𝑁 ∈ ℤ ⇒ ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) | ||
Theorem | peano5uzti 11505* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) | ||
Theorem | dfuzi 11506* | An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 11071 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
⊢ 𝑁 ∈ ℤ ⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
Theorem | uzind 11507* | Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) | ||
Theorem | uzind2 11508* | Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) | ||
Theorem | uzind3 11509* | Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) | ||
Theorem | nn0ind 11510* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | nn0indALT 11511* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either nn0ind 11510 or nn0indALT 11511 may be used; see comment for nnind 11076. (Contributed by NM, 28-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | nn0indd 11512* | Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
⊢ (𝑥 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → 𝜂) | ||
Theorem | fzind 11513* | Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) & ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) | ||
Theorem | fnn0ind 11514* | Induction on the integers from 0 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0 → 𝜓) & ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) → 𝜏) | ||
Theorem | nn0ind-raph 11515* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | zindd 11516* | Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓) & ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) | ||
Theorem | btwnz 11517* | Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) | ||
Theorem | nn0zd 11518 | A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
Theorem | nnzd 11519 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
Theorem | zred 11520 | An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | zcnd 11521 | An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | znegcld 11522 | Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℤ) | ||
Theorem | peano2zd 11523 | Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) | ||
Theorem | zaddcld 11524 | Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) | ||
Theorem | zsubcld 11525 | Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) | ||
Theorem | zmulcld 11526 | Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) | ||
Theorem | znnn0nn 11527 | The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) | ||
Theorem | zadd2cl 11528 | Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
⊢ (𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ) | ||
Theorem | zriotaneg 11529* | The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.) |
⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) | ||
Theorem | suprfinzcl 11530 | The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.) |
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
Syntax | cdc 11531 | Constant used for decimal constructor. |
class ;𝐴𝐵 | ||
Definition | df-dec 11532 | Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (;;;1000 + ;;;2000) = ;;;3000 1kp2ke3k 27433. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.) |
⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | ||
Theorem | dfdecOLD 11533 | Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. Obsolete version of df-dec 11532 as of 1-Aug-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ;𝐴𝐵 = ((10 · 𝐴) + 𝐵) | ||
Theorem | 9p1e10 11534 | 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
⊢ (9 + 1) = ;10 | ||
Theorem | dfdec10 11535 | Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | ||
Theorem | decex 11536 | A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ ;𝐴𝐵 ∈ V | ||
Theorem | decexOLD 11537 | Obsolete proof of decex 11536 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ;𝐴𝐵 ∈ V | ||
Theorem | deceq1 11538 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) | ||
Theorem | deceq1OLD 11539 | Obsolete proof of deceq1 11538 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) | ||
Theorem | deceq2 11540 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | ||
Theorem | deceq2OLD 11541 | Obsolete proof of deceq1 11538 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | ||
Theorem | deceq1i 11542 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐶 | ||
Theorem | deceq2i 11543 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐶𝐴 = ;𝐶𝐵 | ||
Theorem | deceq12i 11544 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐷 | ||
Theorem | numnncl 11545 | Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ | ||
Theorem | num0u 11546 | Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0) | ||
Theorem | num0h 11547 | Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 = ((𝑇 · 0) + 𝐴) | ||
Theorem | numcl 11548 | Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 | ||
Theorem | numsuc 11549 | The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) | ||
Theorem | deccl 11550 | Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ;𝐴𝐵 ∈ ℕ0 | ||
Theorem | decclOLD 11551 | Obsolete proof of deccl 11550 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ;𝐴𝐵 ∈ ℕ0 | ||
Theorem | 10nn 11552 | 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
⊢ ;10 ∈ ℕ | ||
Theorem | 10pos 11553 | The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) |
⊢ 0 < ;10 | ||
Theorem | 10nn0 11554 | 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ ;10 ∈ ℕ0 | ||
Theorem | 10re 11555 | The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) |
⊢ ;10 ∈ ℝ | ||
Theorem | decnncl 11556 | Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ ;𝐴𝐵 ∈ ℕ | ||
Theorem | decnnclOLD 11557 | Obsolete proof of decnncl 11556 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ ;𝐴𝐵 ∈ ℕ | ||
Theorem | dec0u 11558 | Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (;10 · 𝐴) = ;𝐴0 | ||
Theorem | dec0uOLD 11559 | Obsolete version of dec0u 11558 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (10 · 𝐴) = ;𝐴0 | ||
Theorem | dec0h 11560 | Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 = ;0𝐴 | ||
Theorem | dec0hOLD 11561 | Obsolete proof of dec0h 11560 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 = ;0𝐴 | ||
Theorem | numnncl2 11562 | Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ ⇒ ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ | ||
Theorem | decnncl2 11563 | Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ ;𝐴0 ∈ ℕ | ||
Theorem | decnncl2OLD 11564 | Obsolete proof of decnncl2 11563 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ ;𝐴0 ∈ ℕ | ||
Theorem | numlt 11565 | Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) | ||
Theorem | numltc 11566 | Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) | ||
Theorem | le9lt10 11567 | A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less then 10. (Contributed by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐴 ≤ 9 ⇒ ⊢ 𝐴 < ;10 | ||
Theorem | declt 11568 | Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ;𝐴𝐵 < ;𝐴𝐶 | ||
Theorem | decltOLD 11569 | Obsolete proof of declt 11568 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ;𝐴𝐵 < ;𝐴𝐶 | ||
Theorem | decltc 11570 | Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < ;10 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 | ||
Theorem | decltcOLD 11571 | Obsolete version of decltc 11570 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < 10 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 | ||
Theorem | declth 11572 | Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 | ||
Theorem | decsuc 11573 | The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶 & ⊢ 𝑁 = ;𝐴𝐵 ⇒ ⊢ (𝑁 + 1) = ;𝐴𝐶 | ||
Theorem | decsucOLD 11574 | Obsolete proof of decsuc 11573 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶 & ⊢ 𝑁 = ;𝐴𝐵 ⇒ ⊢ (𝑁 + 1) = ;𝐴𝐶 | ||
Theorem | 3declth 11575 | Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐸 ≤ 9 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | ||
Theorem | 3decltc 11576 | Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 15-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 < ;10 & ⊢ 𝐸 < ;10 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | ||
Theorem | 3decltcOLD 11577 | Obsolete version of 3decltc 11576 as of 6-Sep-2021. (Contributed by AV, 15-Jun-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐶 < 10 & ⊢ 𝐸 < 10 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | ||
Theorem | decle 11578 | Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 ≤ 𝐶 ⇒ ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 | ||
Theorem | decleh 11579 | Comparing two decimal integers (unequal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 | ||
Theorem | declei 11580 | Comparing a digit to a decimal integer. (Contributed by AV, 17-Aug-2021.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 ⇒ ⊢ 𝐶 ≤ ;𝐴𝐵 | ||
Theorem | decleOLD 11581 | Obsolete version of decle 11578 as of 8-Sep-2021. (Contributed by AV, 17-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 ≤ 𝐶 ⇒ ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 | ||
Theorem | declecOLD 11582 | Obsolete version of decleh 11579 as of 8-Sep-2021. (Contributed by AV, 17-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 | ||
Theorem | numlti 11583 | Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 ⇒ ⊢ 𝐶 < ((𝑇 · 𝐴) + 𝐵) | ||
Theorem | declti 11584 | Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < ;10 ⇒ ⊢ 𝐶 < ;𝐴𝐵 | ||
Theorem | decltdi 11585 | Comparing a digit to a decimal integer. (Contributed by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 ⇒ ⊢ 𝐶 < ;𝐴𝐵 | ||
Theorem | decltiOLD 11586 | Obsolete version of declti 11584 as of 6-Sep-2021. (Contributed by Mario Carneiro, 18-Feb-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < 10 ⇒ ⊢ 𝐶 < ;𝐴𝐵 | ||
Theorem | numsucc 11587 | The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑇 = (𝑌 + 1) & ⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) | ||
Theorem | decsucc 11588 | The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵 & ⊢ 𝑁 = ;𝐴9 ⇒ ⊢ (𝑁 + 1) = ;𝐵0 | ||
Theorem | decsuccOLD 11589 | Obsolete version of decsucc 11588 as of 6-Sep-2021. (Contributed by Mario Carneiro, 18-Feb-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵 & ⊢ 𝑁 = ;𝐴9 ⇒ ⊢ (𝑁 + 1) = ;𝐵0 | ||
Theorem | 1e0p1 11590 | The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 1 = (0 + 1) | ||
Theorem | dec10p 11591 | Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (;10 + 𝐴) = ;1𝐴 | ||
Theorem | dec10pOLD 11592 | Obsolete version of dec10p 11591 as of 6-Sep-2021. (Contributed by Mario Carneiro, 19-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (10 + 𝐴) = ;1𝐴 | ||
Theorem | dec10OLD 11593 | The decimal form of 10. NB: In our presentations of large numbers later on, we will use our symbol for 10 at the highest digits when advantageous, because we can use this theorem to convert back to "long form" (where each digit is in the range 0-9) with no extra effort. However, we cannot do this for lower digits while maintaining the ease of use of the decimal system, since it requires nontrivial number knowledge (more than just equality theorems) to convert back. (Contributed by Mario Carneiro, 18-Feb-2014.) Obsolete as of 6-Sep-2021, because the symbol 10 will be removed, and ;10 will be used instead in general. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 10 = ;10 | ||
Theorem | 9p1e10bOLD 11594 | Obsolete proof of 9p1e10 11534 as of 1-Aug-2021. (Contributed by Stanislas Polu, 7-Apr-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (9 + 1) = ;10 | ||
Theorem | numma 11595 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | nummac 11596 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | numma2c 11597 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | numadd 11598 | Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ (𝐴 + 𝐶) = 𝐸 & ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | numaddc 11599 | Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝐹 ∈ ℕ0 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | nummul1c 11600 | The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |