Home Metamath Proof ExplorerTheorem List (p. 116 of 425) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-26947) Hilbert Space Explorer (26948-28472) Users' Mathboxes (28473-42426)

Theorem List for Metamath Proof Explorer - 11501-11600   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremeluz2b2 11501 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
(𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))

Theoremeluz2b3 11502 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
(𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))

Theoremuz2m1nn 11503 One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)

Theorem1nuz2 11504 1 is not in (ℤ‘2). (Contributed by Paul Chapman, 21-Nov-2012.)
¬ 1 ∈ (ℤ‘2)

Theoremelnn1uz2 11505 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))

Theoremuz2mulcl 11506 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ (ℤ‘2))

Theoremindstr2 11507* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
(𝑥 = 1 → (𝜑𝜒))    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   𝜒    &   (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))       (𝑥 ∈ ℕ → 𝜑)

Theoremuzinfi 11508 Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.)
𝑀 ∈ ℤ       inf((ℤ𝑀), ℝ, < ) = 𝑀

Theoremnninf 11509 The infimum of the set of positive integers is one. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.)
inf(ℕ, ℝ, < ) = 1

Theoremnn0inf 11510 The infimum of the set of nonnegative integers is zero. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.)
inf(ℕ0, ℝ, < ) = 0

Theoreminfssuzle 11511 The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.)
((𝑆 ⊆ (ℤ𝑀) ∧ 𝐴𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴)

Theoreminfssuzcl 11512 The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.)
((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)

TheoreminfmssuzleOLD 11513 The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. Note that the " < " argument turns supremum into infimum (for which we do not currently have a separate notation). (Contributed by NM, 11-Oct-2005.) Obsolete version of infssuzle 11511 as of 5-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
((𝑆 ⊆ (ℤ𝑀) ∧ 𝐴𝑆) → sup(𝑆, ℝ, < ) ≤ 𝐴)

TheoreminfmssuzclOLD 11514 The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) Obsolete version of infssuzcl 11512 as of 5-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → sup(𝑆, ℝ, < ) ∈ 𝑆)

Theoremublbneg 11515* The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.)
(∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)

Theoremeqreznegel 11516* Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})

Theoremsupminf 11517* The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.)
((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))

Theoremlbzbi 11518* If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))

Theoremzsupss 11519* Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 9769.) (Contributed by Mario Carneiro, 21-Apr-2015.)
((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))

Theoremsuprzcl2 11520* The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl 11197 avoids ax-pre-sup 9769.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Mario Carneiro, 24-Dec-2016.)
((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴)

Theoremsuprzub 11521* The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.)
((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))

Theoremuzsupss 11522* Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.)
𝑍 = (ℤ𝑀)       ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))

Theoremnn01to3 11523 A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Theoremnn0ge2m1nnALT 11524 Alternate proof of nn0ge2m1nn 11115: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 11433, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 11115. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)

5.4.11  Well-ordering principle for bounded-below sets of integers

Theoremuzwo3 11525* Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 11492 allows the lower bound 𝐵 to be any real number. See also nnwo 11493 and nnwos 11495. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.)
((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)

Theoremzmin 11526* There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.)
(𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))

Theoremzmax 11527* There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.)
(𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))

Theoremzbtwnre 11528* There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
(𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥𝑥 < (𝐴 + 1)))

Theoremrebtwnz 11529* There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.)
(𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))

5.4.12  Rational numbers (as a subset of complex numbers)

Syntaxcq 11530 Extend class notation to include the class of rationals.
class

Definitiondf-q 11531 Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 11532 for the relation "is rational." (Contributed by NM, 8-Jan-2002.)
ℚ = ( / “ (ℤ × ℕ))

Theoremelq 11532* Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
(𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))

Theoremqmulz 11533* If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
(𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ)

Theoremznq 11534 The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)

Theoremqre 11535 A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
(𝐴 ∈ ℚ → 𝐴 ∈ ℝ)

Theoremzq 11536 An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
(𝐴 ∈ ℤ → 𝐴 ∈ ℚ)

Theoremzssq 11537 The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.)
ℤ ⊆ ℚ

Theoremnn0ssq 11538 The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
0 ⊆ ℚ

Theoremnnssq 11539 The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
ℕ ⊆ ℚ

Theoremqssre 11540 The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.)
ℚ ⊆ ℝ

Theoremqsscn 11541 The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
ℚ ⊆ ℂ

Theoremqex 11542 The set of rational numbers exists. See also qexALT 11545. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
ℚ ∈ V

Theoremnnq 11543 A positive integer is rational. (Contributed by NM, 17-Nov-2004.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℚ)

Theoremqcn 11544 A rational number is a complex number. (Contributed by NM, 2-Aug-2004.)
(𝐴 ∈ ℚ → 𝐴 ∈ ℂ)

TheoremqexALT 11545 Alternate proof of qex 11542. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
ℚ ∈ V

((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)

Theoremqnegcl 11547 Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
(𝐴 ∈ ℚ → -𝐴 ∈ ℚ)

Theoremqmulcl 11548 Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ)

Theoremqsubcl 11549 Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)

Theoremqreccl 11550 Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)

Theoremqdivcl 11551 Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)

Theoremqrevaddcl 11552 Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.)
(𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ))

Theoremnnrecq 11553 The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.)
(𝐴 ∈ ℕ → (1 / 𝐴) ∈ ℚ)

Theoremirradd 11554 The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.)
((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ))

Theoremirrmul 11555 The product of an irrational with a nonzero rational is irrational. (Contributed by NM, 7-Nov-2008.)
((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ))

5.4.13  Existence of the set of complex numbers

Theoremrpnnen1lem2 11556* Lemma for rpnnen1 11562. (Contributed by Mario Carneiro, 12-May-2013.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))       ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)

Theoremrpnnen1lem1 11557* Lemma for rpnnen1 11562. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))    &   ℕ ∈ V    &   ℚ ∈ V       (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑𝑚 ℕ))

Theoremrpnnen1lem3 11558* Lemma for rpnnen1 11562. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))    &   ℕ ∈ V    &   ℚ ∈ V       (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)

Theoremrpnnen1lem4 11559* Lemma for rpnnen1 11562. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))    &   ℕ ∈ V    &   ℚ ∈ V       (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)

Theoremrpnnen1lem5 11560* Lemma for rpnnen1 11562. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))    &   ℕ ∈ V    &   ℚ ∈ V       (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)

Theoremrpnnen1lem6 11561* Lemma for rpnnen1 11562. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))    &   ℕ ∈ V    &   ℚ ∈ V       ℝ ≼ (ℚ ↑𝑚 ℕ)

Theoremrpnnen1 11562 One half of rpnnen 14664, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹𝑥):ℕ⟶ℚ (see rpnnen1lem6 11561) such that ((𝐹𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The and existence hypotheses provide for use with either nnex 10781 and qex 11542, or nnexALT 10777 and qexALT 11545. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
ℕ ∈ V    &   ℚ ∈ V       ℝ ≼ (ℚ ↑𝑚 ℕ)

Theoremrpnnen1lem1OLD 11563* Lemma for rpnnen1OLD 11567. (Contributed by Mario Carneiro, 12-May-2013.) Obsolete version of rpnnen1lem1 11557 as of 13-Aug-2021. (New usage is discouraged.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))       (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑𝑚 ℕ))

Theoremrpnnen1lem3OLD 11564* Lemma for rpnnen1OLD 11567. (Contributed by Mario Carneiro, 12-May-2013.) Obsolete version of rpnnen1lem3 11558 as of 13-Aug-2021. (New usage is discouraged.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))       (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)

Theoremrpnnen1lem4OLD 11565* Lemma for rpnnen1OLD 11567. (Contributed by Mario Carneiro, 12-May-2013.) Obsolete version of rpnnen1lem4 11559 as of 13-Aug-2021. (New usage is discouraged.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))       (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)

Theoremrpnnen1lem5OLD 11566* Lemma for rpnnen1OLD 11567. (Contributed by Mario Carneiro, 12-May-2013.) Obsolete version of rpnnen1lem5 11560 as of 13-Aug-2021. (New usage is discouraged.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))       (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)

Theoremrpnnen1OLD 11567* One half of rpnnen 14664, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹𝑥):ℕ⟶ℚ such that ((𝐹𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) Obsolete version of rpnnen1 11562 as of 13-Aug-2021. (New usage is discouraged.) (Proof modification is discouraged.)
𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}    &   𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))       ℝ ≼ (ℚ ↑𝑚 ℕ)

TheoremreexALT 11568 Alternate proof of reex 9782. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
ℝ ∈ V

Theoremcnref1o 11569* There is a natural one-to-one mapping from (ℝ × ℝ) to , where we map 𝑥, 𝑦 to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of (see df-c 9697), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))       𝐹:(ℝ × ℝ)–1-1-onto→ℂ

TheoremcnexALT 11570 The set of complex numbers exists. This theorem shows that ax-cnex 9747 is redundant if we assume ax-rep 4597. See also ax-cnex 9747. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
ℂ ∈ V

Theoremxrex 11571 The set of extended reals exists. (Contributed by NM, 24-Dec-2006.)
* ∈ V

Theoremaddex 11572 The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
+ ∈ V

Theoremmulex 11573 The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
· ∈ V

5.5  Order sets

5.5.1  Positive reals (as a subset of complex numbers)

Syntaxcrp 11574 Extend class notation to include the class of positive reals.
class +

Definitiondf-rp 11575 Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥}

Theoremelrp 11576 Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
(𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Theoremelrpii 11577 Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
𝐴 ∈ ℝ    &   0 < 𝐴       𝐴 ∈ ℝ+

Theorem1rp 11578 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
1 ∈ ℝ+

Theorem2rp 11579 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
2 ∈ ℝ+

Theorem3rp 11580 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
3 ∈ ℝ+

Theoremrpre 11581 A positive real is a real. (Contributed by NM, 27-Oct-2007.)
(𝐴 ∈ ℝ+𝐴 ∈ ℝ)

Theoremrpxr 11582 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐴 ∈ ℝ+𝐴 ∈ ℝ*)

Theoremrpcn 11583 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+𝐴 ∈ ℂ)

Theoremnnrp 11584 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)

Theoremrpssre 11585 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
+ ⊆ ℝ

Theoremrpgt0 11586 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
(𝐴 ∈ ℝ+ → 0 < 𝐴)

Theoremrpge0 11587 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
(𝐴 ∈ ℝ+ → 0 ≤ 𝐴)

Theoremrpregt0 11588 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Theoremrprege0 11589 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))

Theoremrpne0 11590 A positive real is nonzero. (Contributed by NM, 18-Jul-2008.)
(𝐴 ∈ ℝ+𝐴 ≠ 0)

Theoremrprene0 11591 A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))

Theoremrpcnne0 11592 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))

Theoremrpcndif0 11593 A positive real number is a complex number not being 0. (Contributed by AV, 29-May-2020.)
(𝐴 ∈ ℝ+𝐴 ∈ (ℂ ∖ {0}))

Theoremralrp 11594 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
(∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥𝜑))

Theoremrexrp 11595 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
(∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥𝜑))

Theoremrpaddcl 11596 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)

Theoremrpmulcl 11597 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+)

Theoremrpdivcl 11598 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)

Theoremrpreccl 11599 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
(𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)

Theoremrphalfcl 11600 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
 Copyright terms: Public domain < Previous  Next >