HomeHome Metamath Proof Explorer
Theorem List (p. 120 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 11901-12000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsupxrss 11901 Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015.)
((𝐴𝐵𝐵 ⊆ ℝ*) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
 
Theoreminfxrcl 11902 The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006.) (Revised by AV, 5-Sep-2020.)
(𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
 
Theoreminfxrlb 11903 A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.)
((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵)
 
Theoreminfxrgelb 11904* The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.)
((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (𝐵 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝐵𝑥))
 
Theoreminfxrre 11905* The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 5-Sep-2020.)
((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
 
Theoremxrinf0 11906 The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.)
inf(∅, ℝ*, < ) = +∞
 
TheoreminfmxrlbOLD 11907 A member of a set of extended reals is greater than or equal to the set's infimum. Note that we did not introduce a notation for the infimum, so we represent it as the supremum for the opposite order relation. (Contributed by Mario Carneiro, 16-Mar-2014.) Obsolete version of infxrlb 11903 as of 5-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
((𝐴 ⊆ ℝ*𝐵𝐴) → sup(𝐴, ℝ*, < ) ≤ 𝐵)
 
TheoreminfmxrgelbOLD 11908* The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by Mario Carneiro, 6-Sep-2014.) Obsolete version of infxrgelb 11904 as of 5-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (𝐵 ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝐵𝑥))
 
Theoreminfxrss 11909 Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.)
((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
 
Theoremreltre 11910* For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥
 
Theoremrpltrp 11911* For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020.)
𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥
 
Theoremreltxrnmnf 11912* For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
 
Theoreminfmremnf 11913 The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.)
inf(ℝ, ℝ*, < ) = -∞
 
Theoreminfmrp1 11914 The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.)
inf(ℝ+, ℝ, < ) = 0
 
5.5.4  Real number intervals
 
Syntaxcioo 11915 Extend class notation with the set of open intervals of extended reals.
class (,)
 
Syntaxcioc 11916 Extend class notation with the set of open-below, closed-above intervals of extended reals.
class (,]
 
Syntaxcico 11917 Extend class notation with the set of closed-below, open-above intervals of extended reals.
class [,)
 
Syntaxcicc 11918 Extend class notation with the set of closed intervals of extended reals.
class [,]
 
Definitiondf-ioo 11919* Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
 
Definitiondf-ioc 11920* Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
(,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
 
Definitiondf-ico 11921* Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
[,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
 
Definitiondf-icc 11922* Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
[,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
 
Theoremixxval 11923* Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
 
Theoremelixx1 11924* Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
 
Theoremixxf 11925* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
 
Theoremixxex 11926* The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       𝑂 ∈ V
 
Theoremixxssxr 11927* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       (𝐴𝑂𝐵) ⊆ ℝ*
 
Theoremelixx3g 11928* Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
 
Theoremixxssixx 11929* An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))       (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
 
Theoremixxdisj 11930* Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
 
Theoremixxun 11931* Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))    &   𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))    &   ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))       (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
 
Theoremixxin 11932* Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))    &   ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))       (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)))
 
Theoremixxss1 11933* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑆𝑦)})    &   ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))       ((𝐴 ∈ ℝ*𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶))
 
Theoremixxss2 11934* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑇𝑦)})    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))       ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶))
 
Theoremixxss12 11935* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))    &   ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))       (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵))
 
Theoremixxub 11936* Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))    &   ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))    &   ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) = 𝐵)
 
Theoremixxlb 11937* Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))    &   ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))    &   ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
 
Theoremiooex 11938 The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
(,) ∈ V
 
Theoremiooval 11939* Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
 
Theoremioo0 11940 An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
 
Theoremioon0 11941 An open interval of extended reals is nonempty iff the lower argument is less than the upper argument. (Contributed by NM, 2-Mar-2007.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵))
 
Theoremndmioo 11942 The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
(¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
 
Theoremiooid 11943 An open interval with identical lower and upper bounds is empty. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝐴(,)𝐴) = ∅
 
Theoremelioo3g 11944 Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioore 11945 A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ)
 
Theoremlbioo 11946 An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.)
¬ 𝐴 ∈ (𝐴(,)𝐵)
 
Theoremubioo 11947 An open interval does not contain its right endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.)
¬ 𝐵 ∈ (𝐴(,)𝐵)
 
Theoremiooval2 11948* Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
 
Theoremiooin 11949 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)))
 
Theoremiooss1 11950 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.)
((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
 
Theoremiooss2 11951 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
 
Theoremiocval 11952* Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)})
 
Theoremicoval 11953* Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)})
 
Theoremiccval 11954* Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
 
Theoremelioo1 11955 Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioo2 11956 Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioc1 11957 Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
 
Theoremelico1 11958 Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
 
Theoremelicc1 11959 Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
 
Theoremiccid 11960 A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
(𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
 
Theoremico0 11961 An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
 
Theoremioc0 11962 An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))
 
Theoremicc0 11963 An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
 
Theoremelicod 11964 Membership in a left closed, right open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐴𝐶)    &   (𝜑𝐶 < 𝐵)       (𝜑𝐶 ∈ (𝐴[,)𝐵))
 
Theoremicogelb 11965 An element of a left closed right open interval is larger or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
 
Theoremelicore 11966 A member of a left closed, right open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
 
Theoremubioc1 11967 The upper bound belongs to an open-below, closed-above interval. See ubicc2 12029. (Contributed by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵))
 
Theoremlbico1 11968 The lower bound belongs to a closed-below, open-above interval. See lbicc2 12028. (Contributed by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
 
Theoremiccleub 11969 An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
 
Theoremiccgelb 11970 An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
 
Theoremelioo5 11971 Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremeliooxr 11972 A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.)
(𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
 
Theoremeliooord 11973 Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
(𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
 
Theoremelioo4g 11974 Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremioossre 11975 An open interval is a set of reals. (Contributed by NM, 31-May-2007.)
(𝐴(,)𝐵) ⊆ ℝ
 
Theoremelioc2 11976 Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
 
Theoremelico2 11977 Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
 
Theoremelicc2 11978 Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
 
Theoremelicc2i 11979 Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
 
Theoremelicc4 11980 Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
 
Theoremiccss 11981 Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
 
Theoremiccssioo 11982 Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
 
Theoremicossico 11983 Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵))
 
Theoremiccss2 11984 Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
 
Theoremiccssico 11985 Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))
 
Theoremiccssioo2 11986 Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
 
Theoremiccssico2 11987 Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))
 
Theoremioomax 11988 The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
(-∞(,)+∞) = ℝ
 
Theoremiccmax 11989 The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.)
(-∞[,]+∞) = ℝ*
 
Theoremioopos 11990 The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.)
(0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
 
Theoremioorp 11991 The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(0(,)+∞) = ℝ+
 
Theoremiooshf 11992 Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵))))
 
Theoremiocssre 11993 A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
 
Theoremicossre 11994 A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
 
Theoremiccssre 11995 A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
 
Theoremiccssxr 11996 A closed interval is a set of extended reals. (Contributed by FL, 28-Jul-2008.) (Revised by Mario Carneiro, 4-Jul-2014.)
(𝐴[,]𝐵) ⊆ ℝ*
 
Theoremiocssxr 11997 An open-below, closed-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.)
(𝐴(,]𝐵) ⊆ ℝ*
 
Theoremicossxr 11998 A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.)
(𝐴[,)𝐵) ⊆ ℝ*
 
Theoremioossicc 11999 An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.)
(𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
 
Theoremicossicc 12000 A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.)
(𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >