HomeHome Metamath Proof Explorer
Theorem List (p. 135 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28623)
  Hilbert Space Explorer  Hilbert Space Explorer
(28624-30146)
  Users' Mathboxes  Users' Mathboxes
(30147-44804)
 

Theorem List for Metamath Proof Explorer - 13401-13500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremseqf1o 13401* Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐶𝑆)    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝐶)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
 
Theoremseradd 13402* The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 26-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremsersub 13403* The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) − (seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremseqid3 13404* A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.)
(𝜑 → (𝑍 + 𝑍) = 𝑍)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
 
Theoremseqid 13405* Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)    &   (𝜑𝑍𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → (𝐹𝑁) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
 
Theoremseqid2 13406* The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑥)    &   (𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremseqhomo 13407* Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))       (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))
 
Theoremseqz 13408* If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)    &   ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝑁𝑉)    &   (𝜑 → (𝐹𝐾) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
 
Theoremseqfeq4 13409* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
 
Theoremseqfeq3 13410* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
(𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))       (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
 
Theoremseqdistr 13411* The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremser0 13412 The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0)
 
Theoremser0f 13413 A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))
 
Theoremserge0 13414* A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremserle 13415* Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
 
Theoremser1const 13416 Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))
 
Theoremseqof 13417* Distribute function operation through a sequence. Note that 𝐺(𝑧) is an implicit function on 𝑧. (Contributed by Mario Carneiro, 3-Mar-2015.)
(𝜑𝐴𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))       (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremseqof2 13418* Distribute function operation through a sequence. Maps-to notation version of seqof 13417. (Contributed by Mario Carneiro, 7-Jul-2017.)
(𝜑𝐴𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → (𝑀...𝑁) ⊆ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)       (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
 
5.6.7  Integer powers
 
Syntaxcexp 13419 Extend class notation to include exponentiation of a complex number to an integer power.
class
 
Definitiondf-exp 13420* Define exponentiation to nonnegative integer powers. For example, (5↑2) = 25 (ex-exp 28157). Terminology: In general, "exponentiation" is the operation of raising a "base" 𝑥 to the power of the "exponent" 𝑦, resulting in the "power" (𝑥𝑦), also called "x to the power of y". In this case, "integer exponentiation" is the operation of raising a complex "base" 𝑥 to the power of an integer 𝑦, resulting in the "integer power" (𝑥𝑦).

This definition is not meant to be used directly; instead, exp0 13423 and expp1 13426 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that 0↑0 = 1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (0exp0e1 13424).

4-Jun-2014: The definition was extended to include negative integer exponents. For example, (-3↑-2) = (1 / 9) (ex-exp 28157). The case 𝑥 = 0, 𝑦 < 0 gives the value (1 / 0), so we will avoid this case in our theorems.

For a definition of exponentiation including complex exponents see df-cxp 25068 (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz 25177. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.)

↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
 
Theoremexpval 13421 Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
 
Theoremexpnnval 13422 Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
 
Theoremexp0 13423 Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1, following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
(𝐴 ∈ ℂ → (𝐴↑0) = 1)
 
Theorem0exp0e1 13424 0↑0 = 1. This is our convention. It follows the convention used by Gleason; see Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by David A. Wheeler, 8-Dec-2018.)
(0↑0) = 1
 
Theoremexp1 13425 Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
(𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
 
Theoremexpp1 13426 Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
 
Theoremexpneg 13427 Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
 
Theoremexpneg2 13428 Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
 
Theoremexpn1 13429 A number to the negative one power is the reciprocal. (Contributed by Mario Carneiro, 4-Jun-2014.)
(𝐴 ∈ ℂ → (𝐴↑-1) = (1 / 𝐴))
 
Theoremexpcllem 13430* Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
𝐹 ⊆ ℂ    &   ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)    &   1 ∈ 𝐹       ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
 
Theoremexpcl2lem 13431* Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
𝐹 ⊆ ℂ    &   ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)    &   1 ∈ 𝐹    &   ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)       ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
 
Theoremnnexpcl 13432 Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
 
Theoremnn0expcl 13433 Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.)
((𝐴 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ0)
 
Theoremzexpcl 13434 Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
 
Theoremqexpcl 13435 Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℚ)
 
Theoremreexpcl 13436 Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℝ)
 
Theoremexpcl 13437 Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
 
Theoremrpexpcl 13438 Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.)
((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
 
Theoremreexpclz 13439 Closure of exponentiation of reals. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ)
 
Theoremqexpclz 13440 Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.)
((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℚ)
 
Theoremm1expcl2 13441 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
 
Theoremm1expcl 13442 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℤ)
 
Theoremexpclzlem 13443 Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))
 
Theoremexpclz 13444 Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
 
Theoremnn0expcli 13445 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝐴𝑁) ∈ ℕ0
 
Theoremnn0sqcl 13446 The square of a nonnegative integer is a nonnegative integer. (Contributed by Stefan O'Rear, 16-Oct-2014.)
(𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
 
Theoremexpm1t 13447 Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
 
Theorem1exp 13448 Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
(𝑁 ∈ ℤ → (1↑𝑁) = 1)
 
Theoremexpeq0 13449 Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by NM, 23-Feb-2005.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
 
Theoremexpne0 13450 Positive integer exponentiation is nonzero iff its mantissa is nonzero. (Contributed by NM, 6-May-2005.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) ≠ 0 ↔ 𝐴 ≠ 0))
 
Theoremexpne0i 13451 Nonnegative integer exponentiation is nonzero if its mantissa is nonzero. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ≠ 0)
 
Theoremexpgt0 13452 Nonnegative integer exponentiation with a positive mantissa is positive. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴𝑁))
 
Theoremexpnegz 13453 Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
 
Theorem0exp 13454 Value of zero raised to a positive integer power. (Contributed by NM, 19-Aug-2004.)
(𝑁 ∈ ℕ → (0↑𝑁) = 0)
 
Theoremexpge0 13455 Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))
 
Theoremexpge1 13456 Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))
 
Theoremexpgt1 13457 Positive integer exponentiation with a mantissa greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))
 
Theoremmulexp 13458 Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
 
Theoremmulexpz 13459 Integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
 
Theoremexprec 13460 Nonnegative integer exponentiation of a reciprocal. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))
 
Theoremexpadd 13461 Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
 
Theoremexpaddzlem 13462 Lemma for expaddz 13463. (Contributed by Mario Carneiro, 4-Jun-2014.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
 
Theoremexpaddz 13463 Sum of exponents law for integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
 
Theoremexpmul 13464 Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
 
Theoremexpmulz 13465 Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 7-Jul-2014.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
 
Theoremm1expeven 13466 Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
(𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
 
Theoremexpsub 13467 Exponent subtraction law for nonnegative integer exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))
 
Theoremexpp1z 13468 Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
 
Theoremexpm1 13469 Value of a complex number raised to an integer power minus one. (Contributed by NM, 25-Dec-2008.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))
 
Theoremexpdiv 13470 Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))
 
Theoremsqval 13471 Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004.)
(𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
 
Theoremsqneg 13472 The square of the negative of a number. (Contributed by NM, 15-Jan-2006.)
(𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
 
Theoremsqsubswap 13473 Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = ((𝐵𝐴)↑2))
 
Theoremsqcl 13474 Closure of square. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
 
Theoremsqmul 13475 Distribution of square over multiplication. (Contributed by NM, 21-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))
 
Theoremsqeq0 13476 A number is zero iff its square is zero. (Contributed by NM, 11-Mar-2006.)
(𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
 
Theoremsqdiv 13477 Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013.) (Proof shortened by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
 
Theoremsqdivid 13478 The square of a nonzero number divided by itself yields the number itself. (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) / 𝐴) = 𝐴)
 
Theoremsqne0 13479 A number is nonzero iff its square is nonzero. (Contributed by NM, 11-Mar-2006.)
(𝐴 ∈ ℂ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0))
 
Theoremresqcl 13480 Closure of the square of a real number. (Contributed by NM, 18-Oct-1999.)
(𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
 
Theoremsqgt0 13481 The square of a nonzero real is positive. (Contributed by NM, 8-Sep-2007.)
((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴↑2))
 
Theoremsqn0rp 13482 The square of a nonzero real is a positive real. (Contributed by AV, 5-Mar-2023.)
((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴↑2) ∈ ℝ+)
 
Theoremnnsqcl 13483 The naturals are closed under squaring. (Contributed by Scott Fenton, 29-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ)
 
Theoremzsqcl 13484 Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
 
Theoremqsqcl 13485 The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
 
Theoremsq11 13486 The square function is one-to-one for nonnegative reals. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
 
Theoremnn0sq11 13487 The square function is one-to-one for nonnegative integers. (Contributed by AV, 25-Jun-2023.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
 
Theoremlt2sq 13488 The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 24-Feb-2006.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2)))
 
Theoremle2sq 13489 The square function on nonnegative reals is monotonic. (Contributed by NM, 18-Oct-1999.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))
 
Theoremle2sq2 13490 The square of a 'less than or equal to' ordering. (Contributed by NM, 21-Mar-2008.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐴𝐵)) → (𝐴↑2) ≤ (𝐵↑2))
 
Theoremsqge0 13491 A square of a real is nonnegative. (Contributed by NM, 18-Oct-1999.)
(𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
 
Theoremzsqcl2 13492 The square of an integer is a nonnegative integer. (Contributed by Mario Carneiro, 18-Apr-2014.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0)
 
Theorem0expd 13493 Value of zero raised to a positive integer power. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → (0↑𝑁) = 0)
 
Theoremexp0d 13494 Value of a complex number raised to the 0th power. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑0) = 1)
 
Theoremexp1d 13495 Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑1) = 𝐴)
 
Theoremexpeq0d 13496 Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → (𝐴𝑁) = 0)       (𝜑𝐴 = 0)
 
Theoremsqvald 13497 Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
 
Theoremsqcld 13498 Closure of square. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑2) ∈ ℂ)
 
Theoremsqeq0d 13499 A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (𝐴↑2) = 0)       (𝜑𝐴 = 0)
 
Theoremexpcld 13500 Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐴𝑁) ∈ ℂ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44804
  Copyright terms: Public domain < Previous  Next >