HomeHome Metamath Proof Explorer
Theorem List (p. 163 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 16201-16300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremssceq 16201 The subcategory subset relation is antisymmetric. (Contributed by Mario Carneiro, 6-Jan-2017.)
((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)
 
Theoremrescval 16202 Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐻)       ((𝐶𝑉𝐻𝑊) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
 
Theoremrescval2 16203 Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐻)    &   (𝜑𝐶𝑉)    &   (𝜑𝑆𝑊)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))       (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
 
Theoremrescbas 16204 Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐻)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶𝑉)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))    &   (𝜑𝑆𝐵)       (𝜑𝑆 = (Base‘𝐷))
 
Theoremreschom 16205 Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐻)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶𝑉)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))    &   (𝜑𝑆𝐵)       (𝜑𝐻 = (Hom ‘𝐷))
 
Theoremreschomf 16206 Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐻)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶𝑉)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))    &   (𝜑𝑆𝐵)       (𝜑𝐻 = (Homf𝐷))
 
Theoremrescco 16207 Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐻)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶𝑉)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))    &   (𝜑𝑆𝐵)    &    · = (comp‘𝐶)       (𝜑· = (comp‘𝐷))
 
Theoremrescabs 16208 Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐶𝑉)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))    &   (𝜑𝐽 Fn (𝑇 × 𝑇))    &   (𝜑𝑆𝑊)    &   (𝜑𝑇𝑆)       (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
 
Theoremrescabs2 16209 Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐶𝑉)    &   (𝜑𝐽 Fn (𝑇 × 𝑇))    &   (𝜑𝑆𝑊)    &   (𝜑𝑇𝑆)       (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (𝐶cat 𝐽))
 
Theoremissubc 16210* Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐻 = (Homf𝐶)    &    1 = (Id‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑆 = dom dom 𝐽)       (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
 
Theoremissubc2 16211* Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐻 = (Homf𝐶)    &    1 = (Id‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐽 Fn (𝑆 × 𝑆))       (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
 
Theorem0ssc 16212 For any category 𝐶, the empty set is a subcategory subset of 𝐶. (Contributed by AV, 23-Apr-2020.)
(𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))
 
Theorem0subcat 16213 For any category 𝐶, the empty set is a (full) subcategory of 𝐶, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.)
(𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))
 
Theoremcatsubcat 16214 For any category 𝐶, 𝐶 itself is a (full) subcategory of 𝐶, see example 4.3(1.b) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.)
(𝐶 ∈ Cat → (Homf𝐶) ∈ (Subcat‘𝐶))
 
Theoremsubcssc 16215 An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐽 ∈ (Subcat‘𝐶))    &   𝐻 = (Homf𝐶)       (𝜑𝐽cat 𝐻)
 
Theoremsubcfn 16216 An element in the set of subcategories is a binary function. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝑆 = dom dom 𝐽)       (𝜑𝐽 Fn (𝑆 × 𝑆))
 
Theoremsubcss1 16217 The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝐽 Fn (𝑆 × 𝑆))    &   𝐵 = (Base‘𝐶)       (𝜑𝑆𝐵)
 
Theoremsubcss2 16218 The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝐽 Fn (𝑆 × 𝑆))    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌))
 
Theoremsubcidcl 16219 The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝐽 Fn (𝑆 × 𝑆))    &   (𝜑𝑋𝑆)    &    1 = (Id‘𝐶)       (𝜑 → ( 1𝑋) ∈ (𝑋𝐽𝑋))
 
Theoremsubccocl 16220 A subcategory is closed under composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝐽 Fn (𝑆 × 𝑆))    &   (𝜑𝑋𝑆)    &    · = (comp‘𝐶)    &   (𝜑𝑌𝑆)    &   (𝜑𝑍𝑆)    &   (𝜑𝐹 ∈ (𝑋𝐽𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐽𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍))
 
Theoremsubccatid 16221* A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐽)    &   (𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝐽 Fn (𝑆 × 𝑆))    &    1 = (Id‘𝐶)       (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥𝑆 ↦ ( 1𝑥))))
 
Theoremsubcid 16222 The identity in a subcategory is the same as the original category. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐽)    &   (𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝐽 Fn (𝑆 × 𝑆))    &    1 = (Id‘𝐶)    &   (𝜑𝑋𝑆)       (𝜑 → ( 1𝑋) = ((Id‘𝐷)‘𝑋))
 
Theoremsubccat 16223 A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐷 = (𝐶cat 𝐽)    &   (𝜑𝐽 ∈ (Subcat‘𝐶))       (𝜑𝐷 ∈ Cat)
 
Theoremissubc3 16224* Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 17063, for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐻 = (Homf𝐶)    &    1 = (Id‘𝐶)    &   𝐷 = (𝐶cat 𝐽)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐽 Fn (𝑆 × 𝑆))       (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
 
Theoremfullsubc 16225 The full subcategory generated by a subset of objects is the category with these objects and the same morphisms as the original. The result is always a subcategory (and it is full, meaning that all morphisms of the original category between objects in the subcategory is also in the subcategory), see definition 4.1(2) of [Adamek] p. 48. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Homf𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑆𝐵)       (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))
 
Theoremfullresc 16226 The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Homf𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑆𝐵)    &   𝐷 = (𝐶s 𝑆)    &   𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))       (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))
 
Theoremresscat 16227 A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017.)
((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s 𝑆) ∈ Cat)
 
Theoremsubsubc 16228 A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐷 = (𝐶cat 𝐻)       (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))
 
8.1.7  Functors
 
Syntaxcfunc 16229 Extend class notation with the class of all functors.
class Func
 
Syntaxcidfu 16230 Extend class notation with identity functor.
class idfunc
 
Syntaxccofu 16231 Extend class notation with functor composition.
class func
 
Syntaxcresf 16232 Extend class notation to include restriction of a functor to a subcategory.
class f
 
Definitiondf-func 16233* Function returning all the functors from a category 𝑡 to a category 𝑢. Definition 3.17 of [Adamek] p. 29, and definition in [Lang] p. 62 ("covariant functor"). Intuitively a functor associates any morphism of 𝑡 to a morphism of 𝑢, any object of 𝑡 to an object of 𝑢, and respects the identity, the composition, the domain and the codomain. Here to capture the idea that a functor associates any object of 𝑡 to an object of 𝑢 we write it associates any identity of 𝑡 to an identity of 𝑢 which simplifies the definition. According to remark 3.19 in [Adamek] p. 30, "a functor F : A -> B is technically a family of functions; one from Ob(A) to Ob(B) [here: f, called "the object part" in the following], and for each pair (A,A') of A-objects, one from hom(A,A') to hom(FA, FA') [here: g, called "the morphism part" in the following]". (Contributed by FL, 10-Feb-2008.) (Revised by Mario Carneiro, 2-Jan-2017.)
Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st𝑧))(Hom ‘𝑢)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓𝑥)) ∧ ∀𝑦𝑏𝑧𝑏𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝑢)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))})
 
Definitiondf-idfu 16234* Define the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
idfunc = (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
 
Definitiondf-cofu 16235* Define the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
 
Definitiondf-resf 16236* Define the restriction of a functor to a subcategory (analogue of df-res 4944). (Contributed by Mario Carneiro, 6-Jan-2017.)
f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩)
 
Theoremrelfunc 16237 The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Rel (𝐷 Func 𝐸)
 
Theoremfuncrcl 16238 Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
 
Theoremisfunc 16239* Value of the set of functors between two categories. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &    1 = (Id‘𝐷)    &   𝐼 = (Id‘𝐸)    &    · = (comp‘𝐷)    &   𝑂 = (comp‘𝐸)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐸 ∈ Cat)       (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
 
Theoremisfuncd 16240* Deduce that an operation is a functor of categories. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &    1 = (Id‘𝐷)    &   𝐼 = (Id‘𝐸)    &    · = (comp‘𝐷)    &   𝑂 = (comp‘𝐸)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐸 ∈ Cat)    &   (𝜑𝐹:𝐵𝐶)    &   (𝜑𝐺 Fn (𝐵 × 𝐵))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))    &   ((𝜑𝑥𝐵) → ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑚 ∈ (𝑥𝐻𝑦) ∧ 𝑛 ∈ (𝑦𝐻𝑧))) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))       (𝜑𝐹(𝐷 Func 𝐸)𝐺)
 
Theoremfuncf1 16241 The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)       (𝜑𝐹:𝐵𝐶)
 
Theoremfuncixp 16242* The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)       (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)))
 
Theoremfuncf2 16243 The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
 
Theoremfuncfn2 16244 The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐷)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)       (𝜑𝐺 Fn (𝐵 × 𝐵))
 
Theoremfuncid 16245 A functor maps each identity to the corresponding identity in the target category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐷)    &    1 = (Id‘𝐷)    &   𝐼 = (Id‘𝐸)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝑋𝐺𝑋)‘( 1𝑋)) = (𝐼‘(𝐹𝑋)))
 
Theoremfuncco 16246 A functor maps composition in the source category to composition in the target. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐷)    &    · = (comp‘𝐷)    &   𝑂 = (comp‘𝐸)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑀 ∈ (𝑋𝐻𝑌))    &   (𝜑𝑁 ∈ (𝑌𝐻𝑍))       (𝜑 → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))
 
Theoremfuncsect 16247 The image of a section under a functor is a section. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝑆 = (Sect‘𝐷)    &   𝑇 = (Sect‘𝐸)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑀(𝑋𝑆𝑌)𝑁)       (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))
 
Theoremfuncinv 16248 The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝐼 = (Inv‘𝐷)    &   𝐽 = (Inv‘𝐸)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑀(𝑋𝐼𝑌)𝑁)       (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))
 
Theoremfunciso 16249 The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of [Adamek] p. 32. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐷)    &   𝐼 = (Iso‘𝐷)    &   𝐽 = (Iso‘𝐸)    &   (𝜑𝐹(𝐷 Func 𝐸)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑀 ∈ (𝑋𝐼𝑌))       (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
 
Theoremfuncoppc 16250 A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of [Adamek] p. 39. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
 
Theoremidfuval 16251* Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐼 = (idfunc𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
 
Theoremidfu2nd 16252 Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐼 = (idfunc𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
 
Theoremidfu2 16253 Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 28-Jan-2017.)
𝐼 = (idfunc𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = 𝐹)
 
Theoremidfu1st 16254 Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐼 = (idfunc𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)       (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
 
Theoremidfu1 16255 Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐼 = (idfunc𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)       (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)
 
Theoremidfucl 16256 The identity functor is a functor. Example 3.20(1) of [Adamek] p. 30. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐼 = (idfunc𝐶)       (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
 
Theoremcofuval 16257* Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))       (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
 
Theoremcofu1st 16258 Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))       (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))
 
Theoremcofu1 16259 Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.)
𝐵 = (Base‘𝐶)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))    &   (𝜑𝑋𝐵)       (𝜑 → ((1st ‘(𝐺func 𝐹))‘𝑋) = ((1st𝐺)‘((1st𝐹)‘𝑋)))
 
Theoremcofu2nd 16260 Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
 
Theoremcofu2 16261 Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.)
𝐵 = (Base‘𝐶)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑅 ∈ (𝑋𝐻𝑌))       (𝜑 → ((𝑋(2nd ‘(𝐺func 𝐹))𝑌)‘𝑅) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌))‘((𝑋(2nd𝐹)𝑌)‘𝑅)))
 
Theoremcofuval2 16262* Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐻(𝐷 Func 𝐸)𝐾)       (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
 
Theoremcofucl 16263 The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Mario Carneiro, 3-Jan-2017.)
(𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))       (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))
 
Theoremcofuass 16264 Functor composition is associative. (Contributed by Mario Carneiro, 3-Jan-2017.)
(𝜑𝐺 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐻 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐾 ∈ (𝐸 Func 𝐹))       (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = (𝐾func (𝐻func 𝐺)))
 
Theoremcofulid 16265 The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
(𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   𝐼 = (idfunc𝐷)       (𝜑 → (𝐼func 𝐹) = 𝐹)
 
Theoremcofurid 16266 The identity functor is a right identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
(𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   𝐼 = (idfunc𝐶)       (𝜑 → (𝐹func 𝐼) = 𝐹)
 
Theoremresfval 16267* Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐹𝑉)    &   (𝜑𝐻𝑊)       (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
 
Theoremresfval2 16268* Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐹𝑉)    &   (𝜑𝐻𝑊)    &   (𝜑𝐺𝑋)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))       (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
 
Theoremresf1st 16269 Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐹𝑉)    &   (𝜑𝐻𝑊)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))       (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))
 
Theoremresf2nd 16270 Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐹𝑉)    &   (𝜑𝐻𝑊)    &   (𝜑𝐻 Fn (𝑆 × 𝑆))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
 
Theoremfuncres 16271 A functor restricted to a subcategory is a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐻 ∈ (Subcat‘𝐶))       (𝜑 → (𝐹f 𝐻) ∈ ((𝐶cat 𝐻) Func 𝐷))
 
Theoremfuncres2b 16272* Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑅 ∈ (Subcat‘𝐷))    &   (𝜑𝑅 Fn (𝑆 × 𝑆))    &   (𝜑𝐹:𝐴𝑆)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹𝑥)𝑅(𝐹𝑦)))       (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺))
 
Theoremfuncres2 16273 A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷cat 𝑅)) ⊆ (𝐶 Func 𝐷))
 
Theoremwunfunc 16274 A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐶𝑈)    &   (𝜑𝐷𝑈)       (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
 
Theoremfuncpropd 16275 If two categories have the same set of objects, morphisms, and compositions, then they have the same functors. (Contributed by Mario Carneiro, 17-Jan-2017.)
(𝜑 → (Homf𝐴) = (Homf𝐵))    &   (𝜑 → (compf𝐴) = (compf𝐵))    &   (𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
 
Theoremfuncres2c 16276 Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.)
𝐴 = (Base‘𝐶)    &   𝐸 = (𝐷s 𝑆)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝑆𝑉)    &   (𝜑𝐹:𝐴𝑆)       (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
 
8.1.8  Full & faithful functors
 
Syntaxcful 16277 Extend class notation with the class of all full functors.
class Full
 
Syntaxcfth 16278 Extend class notation with the class of all faithful functors.
class Faith
 
Definitiondf-full 16279* Function returning all the full functors from a category 𝐶 to a category 𝐷. A full functor is a functor in which all the morphism maps 𝐺(𝑋, 𝑌) between objects 𝑋, 𝑌𝐶 are surjections. Definition 3.27(3) in [Adamek] p. 34. (Contributed by Mario Carneiro, 26-Jan-2017.)
Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
 
Definitiondf-fth 16280* Function returning all the faithful functors from a category 𝐶 to a category 𝐷. A full functor is a functor in which all the morphism maps 𝐺(𝑋, 𝑌) between objects 𝑋, 𝑌𝐶 are injections. Definition 3.27(2) in [Adamek] p. 34. (Contributed by Mario Carneiro, 26-Jan-2017.)
Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
 
Theoremfullfunc 16281 A full functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
 
Theoremfthfunc 16282 A faithful functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
 
Theoremrelfull 16283 The set of full functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Rel (𝐶 Full 𝐷)
 
Theoremrelfth 16284 The set of faithful functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Rel (𝐶 Faith 𝐷)
 
Theoremisfull 16285* Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐽 = (Hom ‘𝐷)       (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
 
Theoremisfull2 16286* Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   𝐻 = (Hom ‘𝐶)       (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
 
Theoremfullfo 16287 The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹(𝐶 Full 𝐷)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌)))
 
Theoremfulli 16288* The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹(𝐶 Full 𝐷)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑅 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))       (𝜑 → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑅 = ((𝑋𝐺𝑌)‘𝑓))
 
Theoremisfth 16289* Value of the set of faithful functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)       (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦)))
 
Theoremisfth2 16290* Equivalent condition for a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐽 = (Hom ‘𝐷)       (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
 
Theoremisffth2 16291* A fully faithful functor is a functor which is bijective on hom-sets. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐽 = (Hom ‘𝐷)       (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))))
 
Theoremfthf1 16292 The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   (𝜑𝐹(𝐶 Faith 𝐷)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
 
Theoremfthi 16293 The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   (𝜑𝐹(𝐶 Faith 𝐷)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑅 ∈ (𝑋𝐻𝑌))    &   (𝜑𝑆 ∈ (𝑋𝐻𝑌))       (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆))
 
Theoremffthf1o 16294 The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   (𝜑𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)))
 
Theoremfullpropd 16295 If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
(𝜑 → (Homf𝐴) = (Homf𝐵))    &   (𝜑 → (compf𝐴) = (compf𝐵))    &   (𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))
 
Theoremfthpropd 16296 If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
(𝜑 → (Homf𝐴) = (Homf𝐵))    &   (𝜑 → (compf𝐴) = (compf𝐵))    &   (𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷))
 
Theoremfulloppc 16297 The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   (𝜑𝐹(𝐶 Full 𝐷)𝐺)       (𝜑𝐹(𝑂 Full 𝑃)tpos 𝐺)
 
Theoremfthoppc 16298 The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   (𝜑𝐹(𝐶 Faith 𝐷)𝐺)       (𝜑𝐹(𝑂 Faith 𝑃)tpos 𝐺)
 
Theoremffthoppc 16299 The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   (𝜑𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺)       (𝜑𝐹((𝑂 Full 𝑃) ∩ (𝑂 Faith 𝑃))tpos 𝐺)
 
Theoremfthsect 16300 A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹(𝐶 Faith 𝐷)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑀 ∈ (𝑋𝐻𝑌))    &   (𝜑𝑁 ∈ (𝑌𝐻𝑋))    &   𝑆 = (Sect‘𝐶)    &   𝑇 = (Sect‘𝐷)       (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >