HomeHome Metamath Proof Explorer
Theorem List (p. 170 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26941)
  Hilbert Space Explorer  Hilbert Space Explorer
(26942-28466)
  Users' Mathboxes  Users' Mathboxes
(28467-42420)
 

Theorem List for Metamath Proof Explorer - 16901-17000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremacsexdimd 16901* In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 16029 for the finite case and acsinfdimd 16900 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (ACS‘𝑋))    &   𝑁 = (mrCls‘𝐴)    &   𝐼 = (mrInd‘𝐴)    &   (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))    &   (𝜑𝑆𝐼)    &   (𝜑𝑇𝐼)    &   (𝜑 → (𝑁𝑆) = (𝑁𝑇))       (𝜑𝑆𝑇)
 
Theoremmrelatglb 16902 Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.)
𝐼 = (toInc‘𝐶)    &   𝐺 = (glb‘𝐼)       ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → (𝐺𝑈) = 𝑈)
 
Theoremmrelatglb0 16903 The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
𝐼 = (toInc‘𝐶)    &   𝐺 = (glb‘𝐼)       (𝐶 ∈ (Moore‘𝑋) → (𝐺‘∅) = 𝑋)
 
Theoremmrelatlub 16904 Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
𝐼 = (toInc‘𝐶)    &   𝐹 = (mrCls‘𝐶)    &   𝐿 = (lub‘𝐼)       ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐿𝑈) = (𝐹 𝑈))
 
TheoremmreclatBAD 16905* A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6393 update): Reprove using isclat 16827 instead of the isclatBAD. hypothesis. See commented-out mreclat above.
𝐼 = (toInc‘𝐶)    &   (𝐼 ∈ CLat ↔ (𝐼 ∈ Poset ∧ ∀𝑥(𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼)))))       (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)
 
9.2.5  Distributive lattices
 
Theoremlatmass 16906 Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)       ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
 
Theoremlatdisdlem 16907* Lemma for latdisd 16908. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)       (𝐾 ∈ Lat → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
 
Theoremlatdisd 16908* In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)       (𝐾 ∈ Lat → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
 
Syntaxcdlat 16909 The class of distributive lattices.
class DLat
 
Definitiondf-dlat 16910* A distributive lattice is a lattice in which meets distribute over joins, or equivalently (latdisd 16908) joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))}
 
Theoremisdlat 16911* Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)       (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
 
Theoremdlatmjdi 16912 In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)       ((𝐾 ∈ DLat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
 
Theoremdlatl 16913 A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
(𝐾 ∈ DLat → 𝐾 ∈ Lat)
 
Theoremodudlatb 16914 The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐷 = (ODual‘𝐾)       (𝐾𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat))
 
Theoremdlatjmdi 16915 In a distributive lattice, joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)       ((𝐾 ∈ DLat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
 
9.2.6  Posets and lattices as relations
 
Syntaxcps 16916 Extend class notation with the class of all posets.
class PosetRel
 
Syntaxctsr 16917 Extend class notation with the class of all totally ordered sets.
class TosetRel
 
Definitiondf-ps 16918 Define the class of all posets (partially ordered sets) with weak ordering (e.g., "less than or equal to" instead of "less than"). A poset is a relation which is transitive, reflexive, and antisymmetric. (Contributed by NM, 11-May-2008.)
PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟))}
 
Definitiondf-tsr 16919 Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.)
TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
 
Theoremisps 16920 The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.)
(𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
 
Theorempsrel 16921 A poset is a relation. (Contributed by NM, 12-May-2008.)
(𝐴 ∈ PosetRel → Rel 𝐴)
 
Theorempsref2 16922 A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.)
(𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
 
Theorempstr2 16923 A poset is transitive. (Contributed by FL, 3-Aug-2009.)
(𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
 
Theorempslem 16924 Lemma for psref 16926 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
 
Theorempsdmrn 16925 The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.)
(𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
 
Theorempsref 16926 A poset is reflexive. (Contributed by NM, 13-May-2008.)
𝑋 = dom 𝑅       ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)
 
Theorempsrn 16927 The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.)
𝑋 = dom 𝑅       (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
 
Theorempsasym 16928 A poset is antisymmetric. (Contributed by NM, 12-May-2008.)
((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)
 
Theorempstr 16929 A poset is transitive. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.)
((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremcnvps 16930 The converse of a poset is a poset. In the general case (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel) is not true. See cnvpsb 16931 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
(𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
 
Theoremcnvpsb 16931 The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.)
(Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
 
Theorempsss 16932 Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.)
(𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
 
Theorempsssdm2 16933 Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.)
𝑋 = dom 𝑅       (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))
 
Theorempsssdm 16934 Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
 
Theoremistsr 16935 The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
𝑋 = dom 𝑅       (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))
 
Theoremistsr2 16936* The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
𝑋 = dom 𝑅       (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
 
Theoremtsrlin 16937 A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theoremtsrlemax 16938 Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅 ∈ TosetRel ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐶, 𝐵) ↔ (𝐴𝑅𝐵𝐴𝑅𝐶)))
 
Theoremtsrps 16939 A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.)
(𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
 
Theoremcnvtsr 16940 The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
 
Theoremtsrss 16941 Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.)
(𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel )
 
Theoremledm 16942 domain of is *. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.)
* = dom ≤
 
Theoremlern 16943 The range of is *. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
* = ran ≤
 
Theoremlefld 16944 The field of the 'less or equal to' relationship on the extended real. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.)
* =
 
Theoremletsr 16945 The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
≤ ∈ TosetRel
 
9.2.7  Directed sets, nets
 
Syntaxcdir 16946 Extend class notation with the class of all directed sets.
class DirRel
 
Syntaxctail 16947 Extend class notation with the tail function.
class tail
 
Definitiondf-dir 16948 Define the class of all directed sets/directions. (Contributed by Jeff Hankins, 25-Nov-2009.)
DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ∧ ((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟)))}
 
Definitiondf-tail 16949* Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009.)
tail = (𝑟 ∈ DirRel ↦ (𝑥 𝑟 ↦ (𝑟 “ {𝑥})))
 
Theoremisdir 16950 A condition for a relation to be a direction. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
𝐴 = 𝑅       (𝑅𝑉 → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (𝑅𝑅)))))
 
Theoremreldir 16951 A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
(𝑅 ∈ DirRel → Rel 𝑅)
 
Theoremdirdm 16952 A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
(𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
 
Theoremdirref 16953 A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
𝑋 = dom 𝑅       ((𝑅 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝑅𝐴)
 
Theoremdirtr 16954 A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
(((𝑅 ∈ DirRel ∧ 𝐶𝑉) ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)
 
Theoremdirge 16955* For any two elements of a directed set, there exists a third element greater than or equal to both. (Note that this does not say that the two elements have a least upper bound.) (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
𝑋 = dom 𝑅       ((𝑅 ∈ DirRel ∧ 𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥))
 
Theoremtsrdir 16956 A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
(𝐴 ∈ TosetRel → 𝐴 ∈ DirRel)
 
PART 10  BASIC ALGEBRAIC STRUCTURES
 
10.1  Monoids
 
10.1.1  Magmas

According to Wikipedia ("Magma (algebra)", 08-Jan-2020, https://en.wikipedia.org/wiki/magma_(algebra)) "In abstract algebra, a magma [...] is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation. The binary operation must be closed by definition but no other properties are imposed.".

Since the concept of a "binary operation" is used in different variants, these differences are explained in more detail in the following:

With df-mpt2 6436, binary operations are defined by a rule, and with df-ov 6434, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation (19-Jan-2020), "... a binary operation on a set 𝑆 is a mapping of the elements of the Cartesian product 𝑆 × 𝑆 to S: 𝑓:(𝑆 × 𝑆𝑆). Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, binary operations mapping the elements of the Cartesian product 𝑆 × 𝑆 are more precisely called internal binary operations. If, in addition, the result is also contained in the set 𝑆, the operation should be called closed internal binary operation. Therefore, a "binary operation on a set 𝑆" according to Wikipedia is a "closed internal binary operation" in a more precise terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations ).

The definition of magmas (Mgm, see df-mgm 16960) concentrates on the closure property of the associated operation, and poses no additional restrictions on it. In this way, it is most general and flexible.

 
Syntaxcplusf 16957 Extend class notation with group addition as a function.
class +𝑓
 
Syntaxcmgm 16958 Extend class notation with class of all magmas.
class Mgm
 
Definitiondf-plusf 16959* Define group addition function. Usually we will use +g directly instead of +𝑓, and they have the same behavior in most cases. The main advantage of +𝑓 for any magma is that it is a guaranteed function (mgmplusf 16969), while +g only has closure (mgmcl 16963). (Contributed by Mario Carneiro, 14-Aug-2015.)
+𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
 
Definitiondf-mgm 16960* A magma is a set equipped with an everywhere defined internal operation. Definition 1 in [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Mgm = {𝑔[(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
 
Theoremismgm 16961* The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
 
Theoremismgmn0 16962* The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
 
Theoremmgmcl 16963 Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremisnmgm 16964 A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)
 
Theoremplusffval 16965* The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)        = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
 
Theoremplusfval 16966 The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + 𝑌))
 
Theoremplusfeq 16967 If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       ( + Fn (𝐵 × 𝐵) → = + )
 
Theoremplusffn 16968 The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)        Fn (𝐵 × 𝐵)
 
Theoremmgmplusf 16969 The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+𝑓𝑀)       (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremissstrmgm 16970* Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐻 = (𝐺s 𝑆)       ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
 
Theoremintopsn 16971 The internal operation for a set is the trivial operation iff the set is a singleton. Formerly part of proof of ring1zr 19003. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
(( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
 
Theoremmgmb1mgm1 16972 The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)       ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
 
Theoremmgm0 16973 Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.)
((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm)
 
Theoremmgm0b 16974 The structure with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.)
{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩} ∈ Mgm
 
Theoremmgm1 16975 The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Mgm)
 
Theoremopifismgm 16976* A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
𝐵 = (Base‘𝑀)    &   (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))    &   (𝜑𝐵 ≠ ∅)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)       (𝜑𝑀 ∈ Mgm)
 
10.1.2  Identity elements

According to Wikipedia ("Identity element", 7-Feb-2020, https://en.wikipedia.org/wiki/Identity_element): "In mathematics, an identity element, or neutral element, is a special type of element of a set with respect to a binary operation on that set, which leaves any element of the set unchanged when combined with it.". Or in more detail "... an element e of S is called a left identity if e * a = a for all a in S, and a right identity if a * e = a for all a in S. If e is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity." We concentrate on two-sided identities in the following. The existence of an identity (an identity is unique if it exists, see mgmidmo 16977) is an important property of monoids (see mndid 17021), and therefore also for groups (see grpid 17175), but also for magmas not required to be associative. Non-associative magmas having an identity element are called "unital magmas" (see Definition 2 in [BourbakiAlg1] p. 12) or, if the magmas are cancellative, "loops" (see definition in [Bruck] p. 15).

In the context of extensible structures, the identity element (of any magma 𝑀) is defined as "group identity element" (0g𝑀), see df-0g 15812. Related theorems which are already valid for magmas are provided in the following.

 
Theoremmgmidmo 16977* A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
 
Theoremgrpidval 16978* The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)        0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
 
Theoremgrpidpropd 16979* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (0g𝐾) = (0g𝐿))
 
Theoremfn0g 16980 The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
0g Fn V
 
Theorem0g0 16981 The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
∅ = (0g‘∅)
 
Theoremismgmid 16982* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
 
Theoremmgmidcl 16983* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       (𝜑0𝐵)
 
Theoremmgmlrid 16984* The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
 
Theoremismgmid2 16985* Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝑈𝐵)    &   ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)       (𝜑𝑈 = 0 )
 
Theoremgrpidd 16986* Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)       (𝜑0 = (0g𝐺))
 
Theoremmgmidsssn0 16987* Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}       (𝐺𝑉𝑂 ⊆ { 0 })
 
10.1.3  Ordered sums in a magma

Usually, the symbol Σg is used in the context of (abelian) groups. Therefore it is called "group sum". It can be used, however, also for magmas, that's why the related theorems are provided in the following. If the magma is either not commutative or not associative or has no identity, special care has to be taken. E.g. the order of the single additions could be important, see remark 2. in the comment for df-gsum 15813.

 
Theoremgsumvalx 16988* Expand out the substitutions in df-gsum 15813. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑠𝐵 ∣ ∀𝑡𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)}    &   (𝜑𝑊 = (𝐹 “ (V ∖ 𝑂)))    &   (𝜑𝐺𝑉)    &   (𝜑𝐹𝑋)    &   (𝜑 → dom 𝐹 = 𝐴)       (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)))))))
 
Theoremgsumval 16989* Expand out the substitutions in df-gsum 15813. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑠𝐵 ∣ ∀𝑡𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)}    &   (𝜑𝑊 = (𝐹 “ (V ∖ 𝑂)))    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝑋)    &   (𝜑𝐹:𝐴𝐵)       (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)))))))
 
Theoremgsumpropd 16990 The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17034 etc. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   (𝜑 → (+g𝐺) = (+g𝐻))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumpropd2lem 16991* Lemma for gsumpropd2 16992. (Contributed by Thierry Arnoux, 28-Jun-2017.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))    &   (𝜑 → Fun 𝐹)    &   (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))    &   𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))    &   𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumpropd2 16992* A stronger version of gsumpropd 16990, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 16993. (Contributed by Thierry Arnoux, 28-Jun-2017.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))    &   (𝜑 → Fun 𝐹)    &   (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsummgmpropd 16993* A stronger version of gsumpropd 16990 if at least one of the involved structures is a magma, see gsumpropd2 16992. (Contributed by AV, 31-Jan-2020.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   (𝜑𝐺 ∈ Mgm)    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))    &   (𝜑 → Fun 𝐹)    &   (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumress 16994* The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐻 = (𝐺s 𝑆)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝑋)    &   (𝜑𝑆𝐵)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑0𝑆)    &   ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumval1 16995* Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝑊)    &   (𝜑𝐹:𝐴𝑂)       (𝜑 → (𝐺 Σg 𝐹) = 0 )
 
Theoremgsum0 16996 Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
0 = (0g𝐺)       (𝐺 Σg ∅) = 0
 
Theoremgsumval2a 16997* Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)    &   𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}    &   (𝜑 → ¬ ran 𝐹𝑂)       (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremgsumval2 16998 Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremgsumprval 16999 Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 = (𝑀 + 1))    &   (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))
 
Theoremgsumpr12val 17000 Value of the group sum operation over the pair {1, 2}. (Contributed by AV, 14-Dec-2018.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹:{1, 2}⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘1) + (𝐹‘2)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42420
  Copyright terms: Public domain < Previous  Next >