HomeHome Metamath Proof Explorer
Theorem List (p. 181 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28697)
  Hilbert Space Explorer  Hilbert Space Explorer
(28698-30220)
  Users' Mathboxes  Users' Mathboxes
(30221-44913)
 

Theorem List for Metamath Proof Explorer - 18001-18100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgsumsubm 18001 Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝑆 ∈ (SubMnd‘𝐺))    &   (𝜑𝐹:𝐴𝑆)    &   𝐻 = (𝐺s 𝑆)       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumz 18002* Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.)
0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
 
Theoremgsumwsubmcl 18003 Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
 
Theoremgsumws1 18004 A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.)
𝐵 = (Base‘𝐺)       (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
 
Theoremgsumwcl 18005 Closure of the composite of a word in a structure 𝐺. (Contributed by Stefan O'Rear, 15-Aug-2015.)
𝐵 = (Base‘𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
 
Theoremgsumsgrpccat 18006 Homomorphic property of not empty composites of a group sum over a semigroup. Formerly part of proof for gsumccat 18008. (Contributed by AV, 26-Dec-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
 
TheoremgsumccatOLD 18007 Obsolete version of gsumccat 18008 as of 13-Jan-2024. Homomorphic property of composites. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
 
Theoremgsumccat 18008 Homomorphic property of composites. Second formula in [Lang] p. 4. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 26-Dec-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
 
Theoremgsumws2 18009 Valuation of a pair in a monoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑆𝐵𝑇𝐵) → (𝐺 Σg ⟨“𝑆𝑇”⟩) = (𝑆 + 𝑇))
 
Theoremgsumccatsn 18010 Homomorphic property of composites with a singleton. (Contributed by AV, 20-Jan-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑍𝐵) → (𝐺 Σg (𝑊 ++ ⟨“𝑍”⟩)) = ((𝐺 Σg 𝑊) + 𝑍))
 
Theoremgsumspl 18011 The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.)
𝐵 = (Base‘𝑀)    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝑆 ∈ Word 𝐵)    &   (𝜑𝐹 ∈ (0...𝑇))    &   (𝜑𝑇 ∈ (0...(♯‘𝑆)))    &   (𝜑𝑋 ∈ Word 𝐵)    &   (𝜑𝑌 ∈ Word 𝐵)    &   (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))       (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))
 
Theoremgsumwmhm 18012 Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
𝐵 = (Base‘𝑀)       ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
 
Theoremgsumwspan 18013* The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.)
𝐵 = (Base‘𝑀)    &   𝐾 = (mrCls‘(SubMnd‘𝑀))       ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
 
10.1.8  Free monoids
 
Syntaxcfrmd 18014 Extend class definition with the free monoid construction.
class freeMnd
 
Syntaxcvrmd 18015 Extend class notation with free monoid injection.
class varFMnd
 
Definitiondf-frmd 18016 Define a free monoid over a set 𝑖 of generators, defined as the set of finite strings on 𝐼 with the operation of concatenation. (Contributed by Mario Carneiro, 27-Sep-2015.)
freeMnd = (𝑖 ∈ V ↦ {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩})
 
Definitiondf-vrmd 18017* Define a free monoid over a set 𝑖 of generators, defined as the set of finite strings on 𝐼 with the operation of concatenation. (Contributed by Mario Carneiro, 27-Sep-2015.)
varFMnd = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ ⟨“𝑗”⟩))
 
Theoremfrmdval 18018 Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
𝑀 = (freeMnd‘𝐼)    &   (𝐼𝑉𝐵 = Word 𝐼)    &    + = ( ++ ↾ (𝐵 × 𝐵))       (𝐼𝑉𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
 
Theoremfrmdbas 18019 The base set of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝑀 = (freeMnd‘𝐼)    &   𝐵 = (Base‘𝑀)       (𝐼𝑉𝐵 = Word 𝐼)
 
Theoremfrmdelbas 18020 An element of the base set of a free monoid is a string on the generators. (Contributed by Mario Carneiro, 27-Feb-2016.)
𝑀 = (freeMnd‘𝐼)    &   𝐵 = (Base‘𝑀)       (𝑋𝐵𝑋 ∈ Word 𝐼)
 
Theoremfrmdplusg 18021 The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝑀 = (freeMnd‘𝐼)    &   𝐵 = (Base‘𝑀)    &    + = (+g𝑀)        + = ( ++ ↾ (𝐵 × 𝐵))
 
Theoremfrmdadd 18022 Value of the monoid operation of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
𝑀 = (freeMnd‘𝐼)    &   𝐵 = (Base‘𝑀)    &    + = (+g𝑀)       ((𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑋 ++ 𝑌))
 
Theoremvrmdfval 18023* The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.)
𝑈 = (varFMnd𝐼)       (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
 
Theoremvrmdval 18024 The value of the generating elements of a free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.)
𝑈 = (varFMnd𝐼)       ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = ⟨“𝐴”⟩)
 
Theoremvrmdf 18025 The mapping from the index set to the generators is a function into the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.)
𝑈 = (varFMnd𝐼)       (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
 
Theoremfrmdmnd 18026 A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝑀 = (freeMnd‘𝐼)       (𝐼𝑉𝑀 ∈ Mnd)
 
Theoremfrmd0 18027 The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.)
𝑀 = (freeMnd‘𝐼)       ∅ = (0g𝑀)
 
Theoremfrmdsssubm 18028 The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝑀 = (freeMnd‘𝐼)       ((𝐼𝑉𝐽𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀))
 
Theoremfrmdgsum 18029 Any word in a free monoid can be expressed as the sum of the singletons composing it. (Contributed by Mario Carneiro, 27-Sep-2015.)
𝑀 = (freeMnd‘𝐼)    &   𝑈 = (varFMnd𝐼)       ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)
 
Theoremfrmdss2 18030 A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of 𝐽 is Word 𝐽". (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑀 = (freeMnd‘𝐼)    &   𝑈 = (varFMnd𝐼)       ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))
 
Theoremfrmdup1 18031* Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.)
𝑀 = (freeMnd‘𝐼)    &   𝐵 = (Base‘𝐺)    &   𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐼𝑋)    &   (𝜑𝐴:𝐼𝐵)       (𝜑𝐸 ∈ (𝑀 MndHom 𝐺))
 
Theoremfrmdup2 18032* The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015.)
𝑀 = (freeMnd‘𝐼)    &   𝐵 = (Base‘𝐺)    &   𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐼𝑋)    &   (𝜑𝐴:𝐼𝐵)    &   𝑈 = (varFMnd𝐼)    &   (𝜑𝑌𝐼)       (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
 
Theoremfrmdup3lem 18033* Lemma for frmdup3 18034. (Contributed by Mario Carneiro, 18-Jul-2016.)
𝑀 = (freeMnd‘𝐼)    &   𝐵 = (Base‘𝐺)    &   𝑈 = (varFMnd𝐼)       (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
 
Theoremfrmdup3 18034* Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.)
𝑀 = (freeMnd‘𝐼)    &   𝐵 = (Base‘𝐺)    &   𝑈 = (varFMnd𝐼)       ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
 
10.1.8.1  Monoid of endofunctions

According to Wikipedia ("Endomorphism", 25-Jan-2024, https://en.wikipedia.org/wiki/Endomorphism) "An endofunction is a function whose domain is equal to its codomain.". An endofunction is sometimes also called "self-mapping" (see https://www.wikidata.org/wiki/Q1691962) or "self-map" (see https://mathworld.wolfram.com/Self-Map.html), in German "Selbstabbildung" (see https://de.wikipedia.org/wiki/Selbstabbildung).

 
Syntaxcefmnd 18035 Extend class notation to include the class of monoids of endofunctions.
class EndoFMnd
 
Definitiondf-efmnd 18036* Define the monoid of endofunctions on set 𝑥. We represent the monoid as the set of functions from 𝑥 to itself ((𝑥m 𝑥)) under function composition, and topologize it as a function space assuming the set is discrete. Analogous to the former definition of SymGrp, see df-symg 18498 and symgvalstruct 18527. (Contributed by AV, 25-Jan-2024.)
EndoFMnd = (𝑥 ∈ V ↦ (𝑥m 𝑥) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))⟩})
 
Theoremefmnd 18037* The monoid of endofunctions on set 𝐴. (Contributed by AV, 25-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (𝐴m 𝐴)    &    + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))    &   𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))       (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
 
Theoremefmndbas 18038 The base set of the monoid of endofunctions on class 𝐴. (Contributed by AV, 25-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)       𝐵 = (𝐴m 𝐴)
 
Theoremefmndbasabf 18039* The base set of the monoid of endofunctions on class 𝐴 is the set of functions from 𝐴 into itself. (Contributed by AV, 29-Mar-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)       𝐵 = {𝑓𝑓:𝐴𝐴}
 
Theoremelefmndbas 18040 Two ways of saying a function is a mapping of 𝐴 to itself. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴𝑉 → (𝐹𝐵𝐹:𝐴𝐴))
 
Theoremelefmndbas2 18041 Two ways of saying a function is a mapping of 𝐴 to itself. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 29-Mar-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐹𝑉 → (𝐹𝐵𝐹:𝐴𝐴))
 
Theoremefmndbasf 18042 Elements in the monoid of endofunctions on 𝐴 are functions from 𝐴 into itself. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐹𝐵𝐹:𝐴𝐴)
 
Theoremefmndhash 18043 The monoid of endofunctions on 𝑛 objects has cardinality 𝑛𝑛. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴 ∈ Fin → (♯‘𝐵) = ((♯‘𝐴)↑(♯‘𝐴)))
 
Theoremefmndbasfi 18044 The monoid of endofunctions on a finite set 𝐴 is finite. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴 ∈ Fin → 𝐵 ∈ Fin)
 
Theoremefmndfv 18045 The function value of an endofunction. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)       ((𝐹𝐵𝑋𝐴) → (𝐹𝑋) ∈ 𝐴)
 
Theoremefmndtset 18046 The topology of the monoid of endofunctions on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just endofunctions - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by AV, 25-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)       (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺))
 
Theoremefmndplusg 18047* The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)        + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
 
Theoremefmndov 18048 The value of the group operation of the monoid of endofunctions on 𝐴. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑋𝑌))
 
Theoremefmndcl 18049 The group operation of the monoid of endofunctions on 𝐴 is closed. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremefmndtopn 18050 The topology of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Jan-2024.)
𝐺 = (EndoFMnd‘𝑋)    &   𝐵 = (Base‘𝐺)       (𝑋𝑉 → ((∏t‘(𝑋 × {𝒫 𝑋})) ↾t 𝐵) = (TopOpen‘𝐺))
 
Theoremsymggrplem 18051* Lemma for symggrp 18530 and efmndsgrp 18053. Conditions for an operation to be associative. Formerly part of proof for symggrp 18530. (Contributed by AV, 28-Jan-2024.)
((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑥𝑦))       ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremefmndmgm 18052 The monoid of endofunctions on a class 𝐴 is a magma. (Contributed by AV, 28-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)       𝐺 ∈ Mgm
 
Theoremefmndsgrp 18053 The monoid of endofunctions on a class 𝐴 is a semigroup. (Contributed by AV, 28-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)       𝐺 ∈ Smgrp
 
Theoremielefmnd 18054 The identity function restricted to a set 𝐴 is an element of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)       (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
 
Theoremefmndid 18055 The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)       (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))
 
Theoremefmndmnd 18056 The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)       (𝐴𝑉𝐺 ∈ Mnd)
 
Theoremefmnd0nmnd 18057 Even the monoid of endofunctions on the empty set is actually a monoid. (Contributed by AV, 31-Jan-2024.)
(EndoFMnd‘∅) ∈ Mnd
 
Theoremefmndbas0 18058 The base set of the monoid of endofunctions on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 31-Mar-2024.)
(Base‘(EndoFMnd‘∅)) = {∅}
 
Theoremefmnd1hash 18059 The monoid of endofunctions on a singleton has cardinality 1. (Contributed by AV, 27-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)    &   𝐴 = {𝐼}       (𝐼𝑉 → (♯‘𝐵) = 1)
 
Theoremefmnd1bas 18060 The monoid of endofunctions on a singleton consists of the identity only. (Contributed by AV, 31-Jan-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)    &   𝐴 = {𝐼}       (𝐼𝑉𝐵 = {{⟨𝐼, 𝐼⟩}})
 
Theoremefmnd2hash 18061 The monoid of endofunctions on a (proper) pair has cardinality 4. (Contributed by AV, 18-Feb-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝐺)    &   𝐴 = {𝐼, 𝐽}       ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 4)
 
Theoremsubmefmnd 18062* If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 18539. (Contributed by AV, 17-Feb-2024.)
𝑀 = (EndoFMnd‘𝐴)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐹 = (Base‘𝑆)       (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
 
Theoremsursubmefmnd 18063* The set of surjective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.)
𝑀 = (EndoFMnd‘𝐴)       (𝐴𝑉 → {:𝐴onto𝐴} ∈ (SubMnd‘𝑀))
 
Theoreminjsubmefmnd 18064* The set of injective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.)
𝑀 = (EndoFMnd‘𝐴)       (𝐴𝑉 → {:𝐴1-1𝐴} ∈ (SubMnd‘𝑀))
 
Theoremidressubmefmnd 18065 The singleton containing only the identity function restricted to a set is a submonoid of the monoid of endofunctions on this set. (Contributed by AV, 17-Feb-2024.)
𝐺 = (EndoFMnd‘𝐴)       (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺))
 
Theoremidresefmnd 18066 The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐸 = (𝐺s {( I ↾ 𝐴)})       (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
 
Theoremsmndex1ibas 18067 The modulo function 𝐼 is an endofunction on 0. (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))       𝐼 ∈ (Base‘𝑀)
 
Theoremsmndex1iidm 18068* The modulo function 𝐼 is idempotent. (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))       (𝐼𝐼) = 𝐼
 
Theoremsmndex1gbas 18069* The constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))       (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) ∈ (Base‘𝑀))
 
Theoremsmndex1gid 18070* The composition of a constant function (𝐺𝐾) with another endofunction on 0 results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))       ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
 
Theoremsmndex1igid 18071* The composition of the modulo function 𝐼 and a constant function (𝐺𝐾) results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))       (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
 
Theoremsmndex1basss 18072* The modulo function 𝐼 and the constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})       𝐵 ⊆ (Base‘𝑀)
 
Theoremsmndex1bas 18073* The base set of the monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾). (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       (Base‘𝑆) = 𝐵
 
Theoremsmndex1mgm 18074* The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a magma. (Contributed by AV, 14-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝑆 ∈ Mgm
 
Theoremsmndex1sgrp 18075* The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝑆 ∈ Smgrp
 
Theoremsmndex1mndlem 18076* Lemma for smndex1mnd 18077 and smndex1id 18078. (Contributed by AV, 16-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
 
Theoremsmndex1mnd 18077* The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝑆 ∈ Mnd
 
Theoremsmndex1id 18078* The modulo function 𝐼 is the identity of the monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾). (Contributed by AV, 16-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝐼 = (0g𝑆)
 
Theoremsmndex1n0mnd 18079* The identity of the monoid 𝑀 of endofunctions on set 0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       (0g𝑀) ∉ 𝐵
 
Theoremnsmndex1 18080* The base set 𝐵 of the constructed monoid 𝑆 is not a submonoid of the monoid 𝑀 of endofunctions on set 0, although 𝑀 ∈ Mnd and 𝑆 ∈ Mnd and 𝐵 ⊆ (Base‘𝑀) hold. (Contributed by AV, 17-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝐵 ∉ (SubMnd‘𝑀)
 
Theoremsmndex2dbas 18081 The doubling function 𝐷 is an endofunction on 0. (Contributed by AV, 18-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))       𝐷𝐵
 
Theoremsmndex2dnrinv 18082 The doubling function 𝐷 has no right inverse in the monoid of endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))       𝑓𝐵 (𝐷𝑓) ≠ 0
 
Theoremsmndex2hbas 18083 The halving functions 𝐻 are endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))    &   𝑁 ∈ ℕ0    &   𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))       𝐻𝐵
 
Theoremsmndex2dlinvh 18084* The halving functions 𝐻 are left inverses of the doubling function 𝐷. (Contributed by AV, 18-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))    &   𝑁 ∈ ℕ0    &   𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))       (𝐻𝐷) = 0
 
10.1.9  Examples and counterexamples for magmas, semigroups and monoids
 
Theoremmgm2nsgrplem1 18085* Lemma 1 for mgm2nsgrp 18089: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 17867). (Contributed by AV, 27-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))       ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
 
Theoremmgm2nsgrplem2 18086* Lemma 2 for mgm2nsgrp 18089. (Contributed by AV, 27-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))    &    = (+g𝑀)       ((𝐴𝑉𝐵𝑊) → ((𝐴 𝐴) 𝐵) = 𝐴)
 
Theoremmgm2nsgrplem3 18087* Lemma 3 for mgm2nsgrp 18089. (Contributed by AV, 28-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))    &    = (+g𝑀)       ((𝐴𝑉𝐵𝑊) → (𝐴 (𝐴 𝐵)) = 𝐵)
 
Theoremmgm2nsgrplem4 18088* Lemma 4 for mgm2nsgrp 18089: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))       ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
 
Theoremmgm2nsgrp 18089* A small magma (with two elements) which is not a semigroup. (Contributed by AV, 28-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))       ((♯‘𝑆) = 2 → (𝑀 ∈ Mgm ∧ 𝑀 ∉ Smgrp))
 
Theoremsgrp2nmndlem1 18090* Lemma 1 for sgrp2nmnd 18097: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 17867). (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))       ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
 
Theoremsgrp2nmndlem2 18091* Lemma 2 for sgrp2nmnd 18097. (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))    &    = (+g𝑀)       ((𝐴𝑆𝐶𝑆) → (𝐴 𝐶) = 𝐴)
 
Theoremsgrp2nmndlem3 18092* Lemma 3 for sgrp2nmnd 18097. (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))    &    = (+g𝑀)       ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
 
Theoremsgrp2rid2 18093* A small semigroup (with two elements) with two right identities which are different if 𝐴𝐵. (Contributed by AV, 10-Feb-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))    &    = (+g𝑀)       ((𝐴𝑉𝐵𝑊) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
 
Theoremsgrp2rid2ex 18094* A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))    &    = (+g𝑀)       ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
 
Theoremsgrp2nmndlem4 18095* Lemma 4 for sgrp2nmnd 18097: M is a semigroup. (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))       ((♯‘𝑆) = 2 → 𝑀 ∈ Smgrp)
 
Theoremsgrp2nmndlem5 18096* Lemma 5 for sgrp2nmnd 18097: M is not a monoid. (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))       ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
 
Theoremsgrp2nmnd 18097* A small semigroup (with two elements) which is not a monoid. (Contributed by AV, 26-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))       ((♯‘𝑆) = 2 → (𝑀 ∈ Smgrp ∧ 𝑀 ∉ Mnd))
 
Theoremmgmnsgrpex 18098 There is a magma which is not a semigroup. (Contributed by AV, 29-Jan-2020.)
𝑚 ∈ Mgm 𝑚 ∉ Smgrp
 
Theoremsgrpnmndex 18099 There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.)
𝑚 ∈ Smgrp 𝑚 ∉ Mnd
 
Theoremsgrpssmgm 18100 The class of all semigroups is a proper subclass of the class of all magmas. (Contributed by AV, 29-Jan-2020.)
Smgrp ⊊ Mgm
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44913
  Copyright terms: Public domain < Previous  Next >