HomeHome Metamath Proof Explorer
Theorem List (p. 196 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28623)
  Hilbert Space Explorer  Hilbert Space Explorer
(28624-30146)
  Users' Mathboxes  Users' Mathboxes
(30147-44804)
 

Theorem List for Metamath Proof Explorer - 19501-19600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsubrgpropd 19501* If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
 
Theoremrhmpropd 19502* Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
(𝜑𝐵 = (Base‘𝐽))    &   (𝜑𝐶 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐶 = (Base‘𝑀))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))       (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
 
10.4.2.1  Sub-division rings
 
Syntaxcsdrg 19503 Syntax for subfields (sub-division-rings).
class SubDRing
 
Definitiondf-sdrg 19504* A sub-division-ring is a subset of a division ring's set which is a division ring under the induced operation. If the overring is commutative this is a field; no special consideration is made of the fields in the center of a skew field. (Contributed by Stefan O'Rear, 3-Oct-2015.)
SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤s 𝑠) ∈ DivRing})
 
Theoremissdrg 19505 Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.)
(𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
 
Theoremsdrgid 19506 Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝑅))
 
Theoremsdrgss 19507 A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝐵 = (Base‘𝑅)       (𝑆 ∈ (SubDRing‘𝑅) → 𝑆𝐵)
 
Theoremissdrg2 19508* Property of a division subring (closure version). (Contributed by Mario Carneiro, 3-Oct-2015.)
𝐼 = (invr𝑅)    &    0 = (0g𝑅)       (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑆 ∖ { 0 })(𝐼𝑥) ∈ 𝑆))
 
Theoremacsfn1p 19509* Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎} ∈ (ACS‘𝑋))
 
Theoremsubrgacs 19510 Closure property of subrings. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵))
 
Theoremsdrgacs 19511 Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))
 
Theoremcntzsdrg 19512 Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.)
𝐵 = (Base‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   𝑍 = (Cntz‘𝑀)       ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))
 
Theoremsubdrgint 19513* The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝐿 = (𝑅s 𝑆)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑆 ⊆ (SubRing‘𝑅))    &   (𝜑𝑆 ≠ ∅)    &   ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)       (𝜑𝐿 ∈ DivRing)
 
Theoremsdrgint 19514 The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubDRing‘𝑅))
 
Theoremprimefld 19515 The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝑃 = (𝑅s (SubDRing‘𝑅))       (𝑅 ∈ DivRing → 𝑃 ∈ Field)
 
Theoremprimefld0cl 19516 The prime field contains the neutral element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.)
0 = (0g𝑅)       (𝑅 ∈ DivRing → 0 (SubDRing‘𝑅))
 
Theoremprimefld1cl 19517 The prime field contains the multiplicative neutral element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.)
1 = (1r𝑅)       (𝑅 ∈ DivRing → 1 (SubDRing‘𝑅))
 
10.4.3  Absolute value (abstract algebra)
 
Syntaxcabv 19518 The set of absolute values on a ring.
class AbsVal
 
Definitiondf-abv 19519* Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs 14585 to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014.)
AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
 
Theoremabvfval 19520* Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
 
Theoremisabv 19521* Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
 
Theoremisabvd 19522* Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.)
(𝜑𝐴 = (AbsVal‘𝑅))    &   (𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑0 = (0g𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹:𝐵⟶ℝ)    &   (𝜑 → (𝐹0 ) = 0)    &   ((𝜑𝑥𝐵𝑥0 ) → 0 < (𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))    &   ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))       (𝜑𝐹𝐴)
 
Theoremabvrcl 19523 Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)       (𝐹𝐴𝑅 ∈ Ring)
 
Theoremabvfge0 19524 An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝐹𝐴𝐹:𝐵⟶(0[,)+∞))
 
Theoremabvf 19525 An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝐹𝐴𝐹:𝐵⟶ℝ)
 
Theoremabvcl 19526 An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)       ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
 
Theoremabvge0 19527 The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)       ((𝐹𝐴𝑋𝐵) → 0 ≤ (𝐹𝑋))
 
Theoremabveq0 19528 The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))
 
Theoremabvne0 19529 The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
 
Theoremabvgt0 19530 The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝐹𝐴𝑋𝐵𝑋0 ) → 0 < (𝐹𝑋))
 
Theoremabvmul 19531 An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
 
Theoremabvtri 19532 An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))
 
Theoremabv0 19533 The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &    0 = (0g𝑅)       (𝐹𝐴 → (𝐹0 ) = 0)
 
Theoremabv1z 19534 The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝐹𝐴10 ) → (𝐹1 ) = 1)
 
Theoremabv1 19535 The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ DivRing ∧ 𝐹𝐴) → (𝐹1 ) = 1)
 
Theoremabvneg 19536 The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑁 = (invg𝑅)       ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
 
Theoremabvsubtri 19537 An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    = (-g𝑅)       ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))
 
Theoremabvrec 19538 The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)       (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))
 
Theoremabvdiv 19539 The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    / = (/r𝑅)       (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))
 
Theoremabvdom 19540 Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)       ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
 
Theoremabvres 19541 The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝑆 = (𝑅s 𝐶)    &   𝐵 = (AbsVal‘𝑆)       ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)
 
Theoremabvtrivd 19542* The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )       (𝜑𝐹𝐴)
 
Theoremabvtriv 19543* The trivial absolute value. (This theorem is true as long as 𝑅 is a domain, but it is not true for rings with zero divisors, which violate the multiplication axiom; abvdom 19540 is the converse of this remark.) (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))       (𝑅 ∈ DivRing → 𝐹𝐴)
 
Theoremabvpropd 19544* If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿))
 
10.4.4  Star rings
 
Syntaxcstf 19545 Extend class notation with the functionalization of the *-ring involution.
class *rf
 
Syntaxcsr 19546 Extend class notation with class of all *-rings.
class *-Ring
 
Definitiondf-staf 19547* Define the functionalization of the involution in a star ring. This is not strictly necessary but by having *𝑟 as an actual function we can state the principal properties of an involution much more cleanly. (Contributed by Mario Carneiro, 6-Oct-2015.)
*rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)))
 
Definitiondf-srng 19548* Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in [Holland95] p. 204. (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.)
*-Ring = {𝑓[(*rf𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr𝑓)) ∧ 𝑖 = 𝑖)}
 
Theoremstaffval 19549* The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝐵 = (Base‘𝑅)    &    = (*𝑟𝑅)    &    = (*rf𝑅)        = (𝑥𝐵 ↦ ( 𝑥))
 
Theoremstafval 19550 The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝐵 = (Base‘𝑅)    &    = (*𝑟𝑅)    &    = (*rf𝑅)       (𝐴𝐵 → ( 𝐴) = ( 𝐴))
 
Theoremstaffn 19551 The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝐵 = (Base‘𝑅)    &    = (*𝑟𝑅)    &    = (*rf𝑅)       ( Fn 𝐵 = )
 
Theoremissrng 19552 The predicate "is a star ring." (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.)
𝑂 = (oppr𝑅)    &    = (*rf𝑅)       (𝑅 ∈ *-Ring ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = ))
 
Theoremsrngrhm 19553 The involution function in a star ring is an antiautomorphism. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝑂 = (oppr𝑅)    &    = (*rf𝑅)       (𝑅 ∈ *-Ring → ∈ (𝑅 RingHom 𝑂))
 
Theoremsrngring 19554 A star ring is a ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
(𝑅 ∈ *-Ring → 𝑅 ∈ Ring)
 
Theoremsrngcnv 19555 The involution function in a star ring is its own inverse function. (Contributed by Mario Carneiro, 6-Oct-2015.)
= (*rf𝑅)       (𝑅 ∈ *-Ring → = )
 
Theoremsrngf1o 19556 The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.)
= (*rf𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ *-Ring → :𝐵1-1-onto𝐵)
 
Theoremsrngcl 19557 The involution function in a star ring is closed in the ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
= (*𝑟𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ *-Ring ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
 
Theoremsrngnvl 19558 The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015.)
= (*𝑟𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ *-Ring ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
 
Theoremsrngadd 19559 The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.)
= (*𝑟𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) + ( 𝑌)))
 
Theoremsrngmul 19560 The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015.)
= (*𝑟𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 · 𝑌)) = (( 𝑌) · ( 𝑋)))
 
Theoremsrng1 19561 The conjugate of the ring identity is the identity. (This is sometimes taken as an axiom, and indeed the proof here follows because we defined *𝑟 to be a ring homomorphism, which preserves 1; nevertheless, it is redundant, as can be seen from the proof of issrngd 19563.) (Contributed by Mario Carneiro, 6-Oct-2015.)
= (*𝑟𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ *-Ring → ( 1 ) = 1 )
 
Theoremsrng0 19562 The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015.)
= (*𝑟𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ *-Ring → ( 0 ) = 0 )
 
Theoremissrngd 19563* Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2015.)
(𝜑𝐾 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑 = (*𝑟𝑅))    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑𝑥𝐾) → ( 𝑥) ∈ 𝐾)    &   ((𝜑𝑥𝐾𝑦𝐾) → ( ‘(𝑥 + 𝑦)) = (( 𝑥) + ( 𝑦)))    &   ((𝜑𝑥𝐾𝑦𝐾) → ( ‘(𝑥 · 𝑦)) = (( 𝑦) · ( 𝑥)))    &   ((𝜑𝑥𝐾) → ( ‘( 𝑥)) = 𝑥)       (𝜑𝑅 ∈ *-Ring)
 
Theoremidsrngd 19564* A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019.)
𝐵 = (Base‘𝑅)    &    = (*𝑟𝑅)    &   (𝜑𝑅 ∈ CRing)    &   ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)       (𝜑𝑅 ∈ *-Ring)
 
10.5  Left modules
 
10.5.1  Definition and basic properties
 
Syntaxclmod 19565 Extend class notation with class of all left modules.
class LMod
 
Syntaxcscaf 19566 The functionalization of the scalar multiplication operation.
class ·sf
 
Definitiondf-lmod 19567* Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.)
LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))}
 
Definitiondf-scaf 19568* Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
 
Theoremislmod 19569* The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)       (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
 
Theoremlmodlema 19570 Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌)))
 
Theoremislmodd 19571* Properties that determine a left module. See note in isgrpd2 18063 regarding the 𝜑 on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.)
(𝜑𝑉 = (Base‘𝑊))    &   (𝜑+ = (+g𝑊))    &   (𝜑𝐹 = (Scalar‘𝑊))    &   (𝜑· = ( ·𝑠𝑊))    &   (𝜑𝐵 = (Base‘𝐹))    &   (𝜑 = (+g𝐹))    &   (𝜑× = (.r𝐹))    &   (𝜑1 = (1r𝐹))    &   (𝜑𝐹 ∈ Ring)    &   (𝜑𝑊 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝑉) → (𝑥 · 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝑉𝑧𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝑉)) → ((𝑥 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑𝑥𝑉) → ( 1 · 𝑥) = 𝑥)       (𝜑𝑊 ∈ LMod)
 
Theoremlmodgrp 19572 A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
(𝑊 ∈ LMod → 𝑊 ∈ Grp)
 
Theoremlmodring 19573 The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LMod → 𝐹 ∈ Ring)
 
Theoremlmodfgrp 19574 The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LMod → 𝐹 ∈ Grp)
 
Theoremlmodbn0 19575 The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐵 = (Base‘𝑊)       (𝑊 ∈ LMod → 𝐵 ≠ ∅)
 
Theoremlmodacl 19576 Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    + = (+g𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
 
Theoremlmodmcl 19577 Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = (.r𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 · 𝑌) ∈ 𝐾)
 
Theoremlmodsn0 19578 The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)       (𝑊 ∈ LMod → 𝐵 ≠ ∅)
 
Theoremlmodvacl 19579 Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
 
Theoremlmodass 19580 Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremlmodlcan 19581 Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))
 
Theoremlmodvscl 19582 Closure of scalar product for a left module. (hvmulcl 28718 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
 
Theoremscaffval 19583* The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)        = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
 
Theoremscafval 19584 The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))
 
Theoremscafeq 19585 If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       ( · Fn (𝐾 × 𝐵) → = · )
 
Theoremscaffn 19586 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)        Fn (𝐾 × 𝐵)
 
Theoremlmodscaf 19587 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)       (𝑊 ∈ LMod → :(𝐾 × 𝐵)⟶𝐵)
 
Theoremlmodvsdi 19588 Distributive law for scalar product (left-distributivity). (ax-hvdistr1 28713 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
 
Theoremlmodvsdir 19589 Distributive law for scalar product (right-distributivity). (ax-hvdistr1 28713 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
 
Theoremlmodvsass 19590 Associative law for scalar product. (ax-hvmulass 28712 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    × = (.r𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
 
Theoremlmod0cl 19591 The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    0 = (0g𝐹)       (𝑊 ∈ LMod → 0𝐾)
 
Theoremlmod1cl 19592 The ring unit in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    1 = (1r𝐹)       (𝑊 ∈ LMod → 1𝐾)
 
Theoremlmodvs1 19593 Scalar product with ring unit. (ax-hvmulid 28711 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &    1 = (1r𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
 
Theoremlmod0vcl 19594 The zero vector is a vector. (ax-hv0cl 28708 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)       (𝑊 ∈ LMod → 0𝑉)
 
Theoremlmod0vlid 19595 Left identity law for the zero vector. (hvaddid2 28728 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
 
Theoremlmod0vrid 19596 Right identity law for the zero vector. (ax-hvaddid 28709 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)
 
Theoremlmod0vid 19597 Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
 
Theoremlmod0vs 19598 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 28715 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑂 = (0g𝐹)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
 
Theoremlmodvs0 19599 Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28729 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )
 
Theoremlmodvsmmulgdi 19600 Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    = (.g𝑊)    &   𝐸 = (.g𝐹)       ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44804
  Copyright terms: Public domain < Previous  Next >