HomeHome Metamath Proof Explorer
Theorem List (p. 260 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28689)
  Hilbert Space Explorer  Hilbert Space Explorer
(28690-30212)
  Users' Mathboxes  Users' Mathboxes
(30213-44900)
 

Theorem List for Metamath Proof Explorer - 25901-26000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlgsdirprm 25901 The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
 
Theoremlgsdir 25902 The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). Together with lgsqr 25921 this implies that the product of two quadratic residues or nonresidues is a residue, and the product of a residue and a nonresidue is a nonresidue. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
 
Theoremlgsdilem2 25903* Lemma for lgsdi 25904. (Contributed by Mario Carneiro, 4-Feb-2015.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀 ≠ 0)    &   (𝜑𝑁 ≠ 0)    &   𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))       (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
 
Theoremlgsdi 25904 The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
 
Theoremlgsne0 25905 The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
 
Theoremlgsabs1 25906 The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1))
 
Theoremlgssq 25907 The Legendre symbol at a square is equal to 1. Together with lgsmod 25893 this implies that the Legendre symbol takes value 1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1)
 
Theoremlgssq2 25908 The Legendre symbol at a square is equal to 1. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1)
 
Theoremlgsprme0 25909 The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
 
Theorem1lgs 25910 The Legendre symbol at 1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.)
(𝑁 ∈ ℤ → (1 /L 𝑁) = 1)
 
Theoremlgs1 25911 The Legendre symbol at 1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.)
(𝐴 ∈ ℤ → (𝐴 /L 1) = 1)
 
Theoremlgsmodeq 25912 The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → (𝐴 /L 𝑁) = (𝐵 /L 𝑁)))
 
Theoremlgsmulsqcoprm 25913 The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁))
 
Theoremlgsdirnn0 25914 Variation on lgsdir 25902 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
 
Theoremlgsdinn0 25915 Variation on lgsdi 25904 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.)
((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
 
Theoremlgsqrlem1 25916 Lemma for lgsqr 25921. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑃)    &   𝑆 = (Poly1𝑌)    &   𝐵 = (Base‘𝑆)    &   𝐷 = ( deg1𝑌)    &   𝑂 = (eval1𝑌)    &    = (.g‘(mulGrp‘𝑆))    &   𝑋 = (var1𝑌)    &    = (-g𝑆)    &    1 = (1r𝑆)    &   𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )    &   𝐿 = (ℤRHom‘𝑌)    &   (𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))       (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
 
Theoremlgsqrlem2 25917* Lemma for lgsqr 25921. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑃)    &   𝑆 = (Poly1𝑌)    &   𝐵 = (Base‘𝑆)    &   𝐷 = ( deg1𝑌)    &   𝑂 = (eval1𝑌)    &    = (.g‘(mulGrp‘𝑆))    &   𝑋 = (var1𝑌)    &    = (-g𝑆)    &    1 = (1r𝑆)    &   𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )    &   𝐿 = (ℤRHom‘𝑌)    &   (𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))       (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
 
Theoremlgsqrlem3 25918* Lemma for lgsqr 25921. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑃)    &   𝑆 = (Poly1𝑌)    &   𝐵 = (Base‘𝑆)    &   𝐷 = ( deg1𝑌)    &   𝑂 = (eval1𝑌)    &    = (.g‘(mulGrp‘𝑆))    &   𝑋 = (var1𝑌)    &    = (-g𝑆)    &    1 = (1r𝑆)    &   𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )    &   𝐿 = (ℤRHom‘𝑌)    &   (𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑 → (𝐴 /L 𝑃) = 1)       (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
 
Theoremlgsqrlem4 25919* Lemma for lgsqr 25921. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑃)    &   𝑆 = (Poly1𝑌)    &   𝐵 = (Base‘𝑆)    &   𝐷 = ( deg1𝑌)    &   𝑂 = (eval1𝑌)    &    = (.g‘(mulGrp‘𝑆))    &   𝑋 = (var1𝑌)    &    = (-g𝑆)    &    1 = (1r𝑆)    &   𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )    &   𝐿 = (ℤRHom‘𝑌)    &   (𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑 → (𝐴 /L 𝑃) = 1)       (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
 
Theoremlgsqrlem5 25920* Lemma for lgsqr 25921. (Contributed by Mario Carneiro, 15-Jun-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
 
Theoremlgsqr 25921* The Legendre symbol for odd primes is 1 iff the number is not a multiple of the prime (in which case it is 0, see lgsne0 25905) and the number is a quadratic residue mod 𝑃 (it is -1 for nonresidues by the process of elimination from lgsabs1 25906). Given our definition of the Legendre symbol, this theorem is equivalent to Euler's criterion. (Contributed by Mario Carneiro, 15-Jun-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
 
Theoremlgsqrmod 25922* If the Legendre symbol of an integer for an odd prime is 1, then the number is a quadratic residue mod 𝑃. (Contributed by AV, 20-Aug-2021.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃)))
 
Theoremlgsqrmodndvds 25923* If the Legendre symbol of an integer 𝐴 for an odd prime is 1, then the number is a quadratic residue mod 𝑃 with a solution 𝑥 of the congruence (𝑥↑2)≡𝐴 (mod 𝑃) which is not divisible by the prime. (Contributed by AV, 20-Aug-2021.) (Proof shortened by AV, 18-Mar-2022.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
 
Theoremlgsdchrval 25924* The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
𝐺 = (DChr‘𝑁)    &   𝑍 = (ℤ/nℤ‘𝑁)    &   𝐷 = (Base‘𝐺)    &   𝐵 = (Base‘𝑍)    &   𝐿 = (ℤRHom‘𝑍)    &   𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))       (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (𝐴 /L 𝑁))
 
Theoremlgsdchr 25925* The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a real Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
𝐺 = (DChr‘𝑁)    &   𝑍 = (ℤ/nℤ‘𝑁)    &   𝐷 = (Base‘𝐺)    &   𝐵 = (Base‘𝑍)    &   𝐿 = (ℤRHom‘𝑍)    &   𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))       ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
 
14.4.9  Gauss' Lemma

Gauss' Lemma is valid for any integer not dividing the given prime number. In the following, only the special case for 2 (not dividing any odd prime) is proven, see gausslemma2d 25944. The general case is still to prove.

 
Theoremgausslemma2dlem0a 25926 Auxiliary lemma 1 for gausslemma2d 25944. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))       (𝜑𝑃 ∈ ℕ)
 
Theoremgausslemma2dlem0b 25927 Auxiliary lemma 2 for gausslemma2d 25944. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)       (𝜑𝐻 ∈ ℕ)
 
Theoremgausslemma2dlem0c 25928 Auxiliary lemma 3 for gausslemma2d 25944. (Contributed by AV, 13-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)       (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
 
Theoremgausslemma2dlem0d 25929 Auxiliary lemma 4 for gausslemma2d 25944. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑𝑀 ∈ ℕ0)
 
Theoremgausslemma2dlem0e 25930 Auxiliary lemma 5 for gausslemma2d 25944. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → (𝑀 · 2) < (𝑃 / 2))
 
Theoremgausslemma2dlem0f 25931 Auxiliary lemma 6 for gausslemma2d 25944. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝐻 = ((𝑃 − 1) / 2)       (𝜑 → (𝑀 + 1) ≤ 𝐻)
 
Theoremgausslemma2dlem0g 25932 Auxiliary lemma 7 for gausslemma2d 25944. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝐻 = ((𝑃 − 1) / 2)       (𝜑𝑀𝐻)
 
Theoremgausslemma2dlem0h 25933 Auxiliary lemma 8 for gausslemma2d 25944. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑁 = (𝐻𝑀)       (𝜑𝑁 ∈ ℕ0)
 
Theoremgausslemma2dlem0i 25934 Auxiliary lemma 9 for gausslemma2d 25944. (Contributed by AV, 14-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑁 = (𝐻𝑀)       (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
 
Theoremgausslemma2dlem1a 25935* Lemma for gausslemma2dlem1 25936. (Contributed by AV, 1-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))       (𝜑 → ran 𝑅 = (1...𝐻))
 
Theoremgausslemma2dlem1 25936* Lemma 1 for gausslemma2d 25944. (Contributed by AV, 5-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))       (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
 
Theoremgausslemma2dlem2 25937* Lemma 2 for gausslemma2d 25944. (Contributed by AV, 4-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
 
Theoremgausslemma2dlem3 25938* Lemma 3 for gausslemma2d 25944. (Contributed by AV, 4-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
 
Theoremgausslemma2dlem4 25939* Lemma 4 for gausslemma2d 25944. (Contributed by AV, 16-Jun-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
 
Theoremgausslemma2dlem5a 25940* Lemma for gausslemma2dlem5 25941. (Contributed by AV, 8-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
 
Theoremgausslemma2dlem5 25941* Lemma 5 for gausslemma2d 25944. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝑁 = (𝐻𝑀)       (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
 
Theoremgausslemma2dlem6 25942* Lemma 6 for gausslemma2d 25944. (Contributed by AV, 16-Jun-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝑁 = (𝐻𝑀)       (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
 
Theoremgausslemma2dlem7 25943* Lemma 7 for gausslemma2d 25944. (Contributed by AV, 13-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝑁 = (𝐻𝑀)       (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
 
Theoremgausslemma2d 25944* Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S={2,4,6,...,(p-1)}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝑁 = (𝐻𝑀)       (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
 
14.4.10  Quadratic reciprocity
 
Theoremlgseisenlem1 25945* Lemma for lgseisen 25949. If 𝑅(𝑢) = (𝑄 · 𝑢) mod 𝑃 and 𝑀(𝑢) = (-1↑𝑅(𝑢)) · 𝑅(𝑢), then for any even 1 ≤ 𝑢𝑃 − 1, 𝑀(𝑢) is also an even integer 1 ≤ 𝑀(𝑢) ≤ 𝑃 − 1. To simplify these statements, we divide all the even numbers by 2, so that it becomes the statement that 𝑀(𝑥 / 2) = (-1↑𝑅(𝑥 / 2)) · 𝑅(𝑥 / 2) / 2 is an integer between 1 and (𝑃 − 1) / 2. (Contributed by Mario Carneiro, 17-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)    &   𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))       (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
 
Theoremlgseisenlem2 25946* Lemma for lgseisen 25949. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)    &   𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))    &   𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)       (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
 
Theoremlgseisenlem3 25947* Lemma for lgseisen 25949. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)    &   𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))    &   𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)    &   𝑌 = (ℤ/nℤ‘𝑃)    &   𝐺 = (mulGrp‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
 
Theoremlgseisenlem4 25948* Lemma for lgseisen 25949. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)    &   𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))    &   𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)    &   𝑌 = (ℤ/nℤ‘𝑃)    &   𝐺 = (mulGrp‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
 
Theoremlgseisen 25949* Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)       (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
 
Theoremlgsquadlem1 25950* Lemma for lgsquad 25953. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
 
Theoremlgsquadlem2 25951* Lemma for lgsquad 25953. Count the members of 𝑆 with even coordinates, and combine with lgsquadlem1 25950 to get the total count of lattice points in 𝑆 (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆)))
 
Theoremlgsquadlem3 25952* Lemma for lgsquad 25953. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁)))
 
Theoremlgsquad 25953 The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.)
((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2))))
 
Theoremlgsquad2lem1 25954 Lemma for lgsquad2 25956. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑 → (𝐴 · 𝐵) = 𝑀)    &   (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))))    &   (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad2lem2 25955* Lemma for lgsquad2 25956. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))    &   (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad2 25956 Extend lgsquad 25953 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad3 25957 Extend lgsquad2 25956 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
(((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
 
Theoremm1lgs 25958 The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
 
Theorem2lgslem1a1 25959* Lemma 1 for 2lgslem1a 25961. (Contributed by AV, 16-Jun-2021.)
((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
 
Theorem2lgslem1a2 25960 Lemma 2 for 2lgslem1a 25961. (Contributed by AV, 18-Jun-2021.)
((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))
 
Theorem2lgslem1a 25961* Lemma 1 for 2lgslem1 25964. (Contributed by AV, 18-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
 
Theorem2lgslem1b 25962* Lemma 2 for 2lgslem1 25964. (Contributed by AV, 18-Jun-2021.)
𝐼 = (𝐴...𝐵)    &   𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))       𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
 
Theorem2lgslem1c 25963 Lemma 3 for 2lgslem1 25964. (Contributed by AV, 19-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
 
Theorem2lgslem1 25964* Lemma 1 for 2lgs 25977. (Contributed by AV, 19-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
 
Theorem2lgslem2 25965 Lemma 2 for 2lgs 25977. (Contributed by AV, 20-Jun-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ)
 
Theorem2lgslem3a 25966 Lemma for 2lgslem3a1 25970. (Contributed by AV, 14-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))
 
Theorem2lgslem3b 25967 Lemma for 2lgslem3b1 25971. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))
 
Theorem2lgslem3c 25968 Lemma for 2lgslem3c1 25972. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1))
 
Theorem2lgslem3d 25969 Lemma for 2lgslem3d1 25973. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))
 
Theorem2lgslem3a1 25970 Lemma 1 for 2lgslem3 25974. (Contributed by AV, 15-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
 
Theorem2lgslem3b1 25971 Lemma 2 for 2lgslem3 25974. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
 
Theorem2lgslem3c1 25972 Lemma 3 for 2lgslem3 25974. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
 
Theorem2lgslem3d1 25973 Lemma 4 for 2lgslem3 25974. (Contributed by AV, 15-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
 
Theorem2lgslem3 25974 Lemma 3 for 2lgs 25977. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
 
Theorem2lgs2 25975 The Legendre symbol for 2 at 2 is 0. (Contributed by AV, 20-Jun-2021.)
(2 /L 2) = 0
 
Theorem2lgslem4 25976 Lemma 4 for 2lgs 25977: special case of 2lgs 25977 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.)
((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
 
Theorem2lgs 25977 The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 25884) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
(𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
 
Theorem2lgsoddprmlem1 25978 Lemma 1 for 2lgsoddprm 25986. (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8)))
 
Theorem2lgsoddprmlem2 25979 Lemma 2 for 2lgsoddprm 25986. (Contributed by AV, 19-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
 
Theorem2lgsoddprmlem3a 25980 Lemma 1 for 2lgsoddprmlem3 25984. (Contributed by AV, 20-Jul-2021.)
(((1↑2) − 1) / 8) = 0
 
Theorem2lgsoddprmlem3b 25981 Lemma 2 for 2lgsoddprmlem3 25984. (Contributed by AV, 20-Jul-2021.)
(((3↑2) − 1) / 8) = 1
 
Theorem2lgsoddprmlem3c 25982 Lemma 3 for 2lgsoddprmlem3 25984. (Contributed by AV, 20-Jul-2021.)
(((5↑2) − 1) / 8) = 3
 
Theorem2lgsoddprmlem3d 25983 Lemma 4 for 2lgsoddprmlem3 25984. (Contributed by AV, 20-Jul-2021.)
(((7↑2) − 1) / 8) = (2 · 3)
 
Theorem2lgsoddprmlem3 25984 Lemma 3 for 2lgsoddprm 25986. (Contributed by AV, 20-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
 
Theorem2lgsoddprmlem4 25985 Lemma 4 for 2lgsoddprm 25986. (Contributed by AV, 20-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ (𝑁 mod 8) ∈ {1, 7}))
 
Theorem2lgsoddprm 25986 The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
(𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
 
14.4.11  All primes 4n+1 are the sum of two squares
 
Theorem2sqlem1 25987* Lemma for 2sq 26000. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
 
Theorem2sqlem2 25988* Lemma for 2sq 26000. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
 
Theoremmul2sq 25989 Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)
 
Theorem2sqlem3 25990 Lemma for 2sqlem5 25992. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))    &   (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))    &   (𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))       (𝜑𝑁𝑆)
 
Theorem2sqlem4 25991 Lemma for 2sqlem5 25992. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))    &   (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))       (𝜑𝑁𝑆)
 
Theorem2sqlem5 25992 Lemma for 2sq 26000. If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)    &   (𝜑𝑃𝑆)       (𝜑𝑁𝑆)
 
Theorem2sqlem6 25993* Lemma for 2sq 26000. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))    &   (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)       (𝜑𝐴𝑆)
 
Theorem2sqlem7 25994* Lemma for 2sq 26000. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}       𝑌 ⊆ (𝑆 ∩ ℕ)
 
Theorem2sqlem8a 25995* Lemma for 2sqlem8 25996. (Contributed by Mario Carneiro, 4-Jun-2016.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ (ℤ‘2))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)    &   (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))    &   𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))       (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
 
Theorem2sqlem8 25996* Lemma for 2sq 26000. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ (ℤ‘2))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)    &   (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))    &   𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐸 = (𝐶 / (𝐶 gcd 𝐷))    &   𝐹 = (𝐷 / (𝐶 gcd 𝐷))       (𝜑𝑀𝑆)
 
Theorem2sqlem9 25997* Lemma for 2sq 26000. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁𝑌)       (𝜑𝑀𝑆)
 
Theorem2sqlem10 25998* Lemma for 2sq 26000. Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}       ((𝐴𝑌𝐵 ∈ ℕ ∧ 𝐵𝐴) → 𝐵𝑆)
 
Theorem2sqlem11 25999* Lemma for 2sq 26000. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}       ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃𝑆)
 
Theorem2sq 26000* All primes of the form 4𝑘 + 1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015.)
((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900
  Copyright terms: Public domain < Previous  Next >