HomeHome Metamath Proof Explorer
Theorem List (p. 269 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28689)
  Hilbert Space Explorer  Hilbert Space Explorer
(28690-30212)
  Users' Mathboxes  Users' Mathboxes
(30213-44899)
 

Theorem List for Metamath Proof Explorer - 26801-26900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremstructiedg0val 26801 The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
𝑆 ∈ ℕ    &   (Base‘ndx) < 𝑆    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}       ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)
 
Theoremstructgrssvtxlem 26802 Lemma for structgrssvtx 26803 and structgrssiedg 26804. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → 2 ≤ (♯‘dom 𝐺))
 
Theoremstructgrssvtx 26803 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → (Vtx‘𝐺) = 𝑉)
 
Theoremstructgrssiedg 26804 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → (iEdg‘𝐺) = 𝐸)
 
Theoremstruct2grstr 26805 A graph represented as an extensible structure with vertices as base set and indexed edges is actually an extensible structure. (Contributed by AV, 23-Nov-2020.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       𝐺 Struct ⟨(Base‘ndx), (.ef‘ndx)⟩
 
Theoremstruct2grvtx 26806 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = 𝑉)
 
Theoremstruct2griedg 26807 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = 𝐸)
 
Theoremgraop 26808 Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.)
𝐻 = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩       ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))
 
Theoremgrastruct 26809 Any representation of a graph 𝐺 (especially as ordered pair 𝐺 = ⟨𝑉, 𝐸) is convertible in a representation of the graph as extensible structure. (Contributed by AV, 8-Oct-2020.)
𝐻 = {⟨(Base‘ndx), (Vtx‘𝐺)⟩, ⟨(.ef‘ndx), (iEdg‘𝐺)⟩}       ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))
 
Theoremgropd 26810* If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.)
(𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))    &   (𝜑𝑉𝑈)    &   (𝜑𝐸𝑊)       (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
 
Theoremgrstructd 26811* If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
(𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))    &   (𝜑𝑉𝑈)    &   (𝜑𝐸𝑊)    &   (𝜑𝑆𝑋)    &   (𝜑 → Fun (𝑆 ∖ {∅}))    &   (𝜑 → 2 ≤ (♯‘dom 𝑆))    &   (𝜑 → (Base‘𝑆) = 𝑉)    &   (𝜑 → (.ef‘𝑆) = 𝐸)       (𝜑[𝑆 / 𝑔]𝜓)
 
Theoremgropeld 26812* If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.)
(𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))    &   (𝜑𝑉𝑈)    &   (𝜑𝐸𝑊)       (𝜑 → ⟨𝑉, 𝐸⟩ ∈ 𝐶)
 
Theoremgrstructeld 26813* If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
(𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))    &   (𝜑𝑉𝑈)    &   (𝜑𝐸𝑊)    &   (𝜑𝑆𝑋)    &   (𝜑 → Fun (𝑆 ∖ {∅}))    &   (𝜑 → 2 ≤ (♯‘dom 𝑆))    &   (𝜑 → (Base‘𝑆) = 𝑉)    &   (𝜑 → (.ef‘𝑆) = 𝐸)       (𝜑𝑆𝐶)
 
Theoremsetsvtx 26814 The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020.) (Revised by AV, 16-Nov-2021.)
𝐼 = (.ef‘ndx)    &   (𝜑𝐺 Struct 𝑋)    &   (𝜑 → (Base‘ndx) ∈ dom 𝐺)    &   (𝜑𝐸𝑊)       (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘𝐺))
 
Theoremsetsiedg 26815 The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
𝐼 = (.ef‘ndx)    &   (𝜑𝐺 Struct 𝑋)    &   (𝜑 → (Base‘ndx) ∈ dom 𝐺)    &   (𝜑𝐸𝑊)       (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
 
16.1.2.4  Representations of graphs without edges
 
Theoremsnstrvtxval 26816 The set of vertices of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See vtxvalsnop 26820 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 23-Sep-2020.)
𝑉 ∈ V    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩}       (𝑉 ≠ (Base‘ndx) → (Vtx‘𝐺) = 𝑉)
 
Theoremsnstriedgval 26817 The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 26821 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.)
𝑉 ∈ V    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩}       (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)
 
16.1.2.5  Degenerated cases of representations of graphs
 
Theoremvtxval0 26818 Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.)
(Vtx‘∅) = ∅
 
Theoremiedgval0 26819 Degenerated case 1 for edges: The set of indexed edges of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.)
(iEdg‘∅) = ∅
 
Theoremvtxvalsnop 26820 Degenerated case 2 for vertices: The set of vertices of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.)
𝐵 ∈ V    &   𝐺 = {⟨𝐵, 𝐵⟩}       (Vtx‘𝐺) = {𝐵}
 
Theoremiedgvalsnop 26821 Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.)
𝐵 ∈ V    &   𝐺 = {⟨𝐵, 𝐵⟩}       (iEdg‘𝐺) = {𝐵}
 
Theoremvtxval3sn 26822 Degenerated case 3 for vertices: The set of vertices of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.)
𝐴 ∈ V       (Vtx‘{{{𝐴}}}) = {𝐴}
 
Theoremiedgval3sn 26823 Degenerated case 3 for edges: The set of indexed edges of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.)
𝐴 ∈ V       (iEdg‘{{{𝐴}}}) = {𝐴}
 
Theoremvtxvalprc 26824 Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
(𝐶 ∉ V → (Vtx‘𝐶) = ∅)
 
Theoremiedgvalprc 26825 Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
(𝐶 ∉ V → (iEdg‘𝐶) = ∅)
 
16.1.3  Edges as range of the edge function
 
Syntaxcedg 26826 Extend class notation with the set of edges (of an undirected simple (hyper-/pseudo-)graph).
class Edg
 
Definitiondf-edg 26827 Define the class of edges of a graph, see also definition "E = E(G)" in section I.1 of [Bollobas] p. 1. This definition is very general: It defines edges of a class as the range of its edge function (which does not even need to be a function). Therefore, this definition could also be used for hypergraphs, pseudographs and multigraphs. In these cases, however, the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. In some cases, this is no problem, so theorems with Edg are meaningful nevertheless (e.g., edguhgr 26908). Usually, however, this definition is used only for undirected simple (hyper-/pseudo-)graphs (with or without loops). (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.)
Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))
 
Theoremedgval 26828 The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.)
(Edg‘𝐺) = ran (iEdg‘𝐺)
 
Theoremiedgedg 26829 An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.)
𝐸 = (iEdg‘𝐺)       ((Fun 𝐸𝐼 ∈ dom 𝐸) → (𝐸𝐼) ∈ (Edg‘𝐺))
 
Theoremedgopval 26830 The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.)
((𝑉𝑊𝐸𝑋) → (Edg‘⟨𝑉, 𝐸⟩) = ran 𝐸)
 
Theoremedgov 26831 The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 26830. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.)
((𝑉𝑊𝐸𝑋) → (𝑉Edg𝐸) = ran 𝐸)
 
Theoremedgstruct 26832 The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       ((𝑉𝑊𝐸𝑋) → (Edg‘𝐺) = ran 𝐸)
 
Theoremedgiedgb 26833* A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.)
𝐼 = (iEdg‘𝐺)       (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
 
Theoremedg0iedg0 26834 There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.)
𝐼 = (iEdg‘𝐺)    &   𝐸 = (Edg‘𝐺)       (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))
 
16.2  Undirected graphs

For undirected graphs, we will have the following hierarchy/taxonomy:

* Undirected Hypergraph: UHGraph

* Undirected loop-free graphs: ULFGraph (not defined formally yet)

* Undirected simple Hypergraph: USHGraph => USHGraph ⊆ UHGraph (ushgruhgr 26848)

* Undirected Pseudograph: UPGraph => UPGraph ⊆ UHGraph (upgruhgr 26881)

* Undirected loop-free hypergraph: ULFHGraph (not defined formally yet) => ULFHGraph ⊆ UHGraph and ULFHGraph ULFGraph

* Undirected loop-free simple hypergraph: ULFSHGraph (not defined formally yet) => ULFSHGraph ⊆ USHGraph and ULFSHGraph ULFHGraph

* Undirected simple Pseudograph: USPGraph => USPGraph ⊆ UPGraph (uspgrupgr 26955) and USPGraph ⊆ USHGraph (uspgrushgr 26954), see also uspgrupgrushgr 26956

* Undirected Muligraph: UMGraph => UMGraph ⊆ UPGraph (umgrupgr 26882) and UMGraph ⊆ ULFHGraph (umgrislfupgr 26902)

* Undirected simple Graph: USGraph => USGraph ⊆ USPGraph (usgruspgr 26957) and USGraph ⊆ UMGraph (usgrumgr 26958) and USGraph ⊆ ULFSHGraph (usgrislfuspgr 26963) see also usgrumgruspgr 26959

 
16.2.1  Undirected hypergraphs
 
Syntaxcuhgr 26835 Extend class notation with undirected hypergraphs.
class UHGraph
 
Syntaxcushgr 26836 Extend class notation with undirected simple hypergraphs.
class USHGraph
 
Definitiondf-uhgr 26837* Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into the power set of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 8-Oct-2020.)
UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
 
Definitiondf-ushgr 26838* Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.)
USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})}
 
Theoremisuhgr 26839 The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
 
Theoremisushgr 26840 The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
 
Theoremuhgrf 26841 The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
 
Theoremushgrf 26842 The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺 ∈ USHGraph → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))
 
Theoremuhgrss 26843 An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
 
Theoremuhgreq12g 26844 If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)    &   𝑊 = (Vtx‘𝐻)    &   𝐹 = (iEdg‘𝐻)       (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph))
 
Theoremuhgrfun 26845 The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.)
𝐸 = (iEdg‘𝐺)       (𝐺 ∈ UHGraph → Fun 𝐸)
 
Theoremuhgrn0 26846 An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.)
𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
 
Theoremlpvtx 26847 The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))
 
Theoremushgruhgr 26848 An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
(𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
 
Theoremisuhgrop 26849 The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.)
((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
 
Theoremuhgr0e 26850 The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
(𝜑𝐺𝑊)    &   (𝜑 → (iEdg‘𝐺) = ∅)       (𝜑𝐺 ∈ UHGraph)
 
Theoremuhgr0vb 26851 The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.)
((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
 
Theoremuhgr0 26852 The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.)
∅ ∈ UHGraph
 
Theoremuhgrun 26853 The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
(𝜑𝐺 ∈ UHGraph)    &   (𝜑𝐻 ∈ UHGraph)    &   𝐸 = (iEdg‘𝐺)    &   𝐹 = (iEdg‘𝐻)    &   𝑉 = (Vtx‘𝐺)    &   (𝜑 → (Vtx‘𝐻) = 𝑉)    &   (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)    &   (𝜑𝑈𝑊)    &   (𝜑 → (Vtx‘𝑈) = 𝑉)    &   (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))       (𝜑𝑈 ∈ UHGraph)
 
Theoremuhgrunop 26854 The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are hypergraphs, then 𝑉, 𝐸𝐹 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
(𝜑𝐺 ∈ UHGraph)    &   (𝜑𝐻 ∈ UHGraph)    &   𝐸 = (iEdg‘𝐺)    &   𝐹 = (iEdg‘𝐻)    &   𝑉 = (Vtx‘𝐺)    &   (𝜑 → (Vtx‘𝐻) = 𝑉)    &   (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)       (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)
 
Theoremushgrun 26855 The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
(𝜑𝐺 ∈ USHGraph)    &   (𝜑𝐻 ∈ USHGraph)    &   𝐸 = (iEdg‘𝐺)    &   𝐹 = (iEdg‘𝐻)    &   𝑉 = (Vtx‘𝐺)    &   (𝜑 → (Vtx‘𝐻) = 𝑉)    &   (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)    &   (𝜑𝑈𝑊)    &   (𝜑 → (Vtx‘𝑈) = 𝑉)    &   (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))       (𝜑𝑈 ∈ UHGraph)
 
Theoremushgrunop 26856 The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are simple hypergraphs, then 𝑉, 𝐸𝐹 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
(𝜑𝐺 ∈ USHGraph)    &   (𝜑𝐻 ∈ USHGraph)    &   𝐸 = (iEdg‘𝐺)    &   𝐹 = (iEdg‘𝐻)    &   𝑉 = (Vtx‘𝐺)    &   (𝜑 → (Vtx‘𝐻) = 𝑉)    &   (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)       (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)
 
Theoremuhgrstrrepe 26857 Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring (𝜑𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑𝐺 ∈ V). (Contributed by AV, 18-Jan-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
𝑉 = (Base‘𝐺)    &   𝐼 = (.ef‘ndx)    &   (𝜑𝐺 Struct 𝑋)    &   (𝜑 → (Base‘ndx) ∈ dom 𝐺)    &   (𝜑𝐸𝑊)    &   (𝜑𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))       (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph)
 
Theoremincistruhgr 26858* An incidence structure 𝑃, 𝐿, 𝐼 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations (analogous to LineG and Itv) and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
 
16.2.2  Undirected pseudographs and multigraphs
 
Syntaxcupgr 26859 Extend class notation with undirected pseudographs.
class UPGraph
 
Syntaxcumgr 26860 Extend class notation with undirected multigraphs.
class UMGraph
 
Definitiondf-upgr 26861* Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgr 26862). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.)
UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
 
Definitiondf-umgr 26862* Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 13825 and isumgrs 26875). (Contributed by AV, 24-Nov-2020.)
UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
 
Theoremisupgr 26863* The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
 
Theoremwrdupgr 26864* The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺𝑈𝐸 ∈ Word 𝑋) → (𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
 
Theoremupgrf 26865* The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfn 26866 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
 
Theoremupgrfn 26866* The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
 
Theoremupgrss 26867 An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
 
Theoremupgrn0 26868 An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
 
Theoremupgrle 26869 An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
 
Theoremupgrfi 26870 An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
 
Theoremupgrex 26871* An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
 
Theoremupgrbi 26872* Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 28-Feb-2021.)
𝑋𝑉    &   𝑌𝑉       {𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
 
Theoremupgrop 26873 A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
(𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
 
Theoremisumgr 26874* The property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
 
Theoremisumgrs 26875* The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
 
Theoremwrdumgr 26876* The property of being an undirected multigraph, expressing the edges as "words". (Contributed by AV, 24-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺𝑈𝐸 ∈ Word 𝑋) → (𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
 
Theoremumgrf 26877* The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfn 26878 without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
 
Theoremumgrfn 26878* The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
 
Theoremumgredg2 26879 An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)
 
Theoremumgrbi 26880* Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.)
𝑋𝑉    &   𝑌𝑉    &   𝑋𝑌       {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
 
Theoremupgruhgr 26881 An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.)
(𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
 
Theoremumgrupgr 26882 An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.)
(𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
 
Theoremumgruhgr 26883 An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.)
(𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
 
Theoremupgrle2 26884 An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
 
Theoremumgrnloopv 26885 In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))
 
Theoremumgredgprv 26886 In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
𝐸 = (iEdg‘𝐺)    &   𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑉𝑁𝑉)))
 
Theoremumgrnloop 26887* In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
𝐸 = (iEdg‘𝐺)       (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁))
 
Theoremumgrnloop0 26888* A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.)
𝐸 = (iEdg‘𝐺)       (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) = {𝑈}} = ∅)
 
Theoremumgr0e 26889 The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
(𝜑𝐺𝑊)    &   (𝜑 → (iEdg‘𝐺) = ∅)       (𝜑𝐺 ∈ UMGraph)
 
Theoremupgr0e 26890 The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.)
(𝜑𝐺𝑊)    &   (𝜑 → (iEdg‘𝐺) = ∅)       (𝜑𝐺 ∈ UPGraph)
 
Theoremupgr1elem 26891* Lemma for upgr1e 26892 and uspgr1e 27020. (Contributed by AV, 16-Oct-2020.)
(𝜑 → {𝐵, 𝐶} ∈ 𝑆)    &   (𝜑𝐵𝑊)       (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝑆 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
 
Theoremupgr1e 26892 A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e 27020. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})       (𝜑𝐺 ∈ UPGraph)
 
Theoremupgr0eop 26893 The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, see usgr0eop 27022, and therefore also a multigraph (𝐺 ∈ UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.)
(𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph)
 
Theoremupgr1eop 26894 A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1eop 27023. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.)
(((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph)
 
Theoremupgr0eopALT 26895 Alternate proof of upgr0eop 26893, using the general theorem gropeld 26812 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 26893). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph)
 
Theoremupgr1eopALT 26896 Alternate proof of upgr1eop 26894, using the general theorem gropeld 26812 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop 26894). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph)
 
Theoremupgrun 26897 The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
(𝜑𝐺 ∈ UPGraph)    &   (𝜑𝐻 ∈ UPGraph)    &   𝐸 = (iEdg‘𝐺)    &   𝐹 = (iEdg‘𝐻)    &   𝑉 = (Vtx‘𝐺)    &   (𝜑 → (Vtx‘𝐻) = 𝑉)    &   (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)    &   (𝜑𝑈𝑊)    &   (𝜑 → (Vtx‘𝑈) = 𝑉)    &   (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))       (𝜑𝑈 ∈ UPGraph)
 
Theoremupgrunop 26898 The union of two pseudographs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are pseudographs, then 𝑉, 𝐸𝐹 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
(𝜑𝐺 ∈ UPGraph)    &   (𝜑𝐻 ∈ UPGraph)    &   𝐸 = (iEdg‘𝐺)    &   𝐹 = (iEdg‘𝐻)    &   𝑉 = (Vtx‘𝐺)    &   (𝜑 → (Vtx‘𝐻) = 𝑉)    &   (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)       (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)
 
Theoremumgrun 26899 The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.)
(𝜑𝐺 ∈ UMGraph)    &   (𝜑𝐻 ∈ UMGraph)    &   𝐸 = (iEdg‘𝐺)    &   𝐹 = (iEdg‘𝐻)    &   𝑉 = (Vtx‘𝐺)    &   (𝜑 → (Vtx‘𝐻) = 𝑉)    &   (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)    &   (𝜑𝑈𝑊)    &   (𝜑 → (Vtx‘𝑈) = 𝑉)    &   (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))       (𝜑𝑈 ∈ UMGraph)
 
Theoremumgrunop 26900 The union of two multigraphs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are multigraphs, then 𝑉, 𝐸𝐹 is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
(𝜑𝐺 ∈ UMGraph)    &   (𝜑𝐻 ∈ UMGraph)    &   𝐸 = (iEdg‘𝐺)    &   𝐹 = (iEdg‘𝐻)    &   𝑉 = (Vtx‘𝐺)    &   (𝜑 → (Vtx‘𝐻) = 𝑉)    &   (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)       (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UMGraph)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44899
  Copyright terms: Public domain < Previous  Next >