Home Metamath Proof ExplorerTheorem List (p. 27 of 429) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27903) Hilbert Space Explorer (27904-29428) Users' Mathboxes (29429-42879)

Theorem List for Metamath Proof Explorer - 2601-2700   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theorembaroco 2601 "Baroco", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜒 is not 𝜓, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, AOO-2: PaM and SoM therefore SoP.) For example, "All informative things are useful", "Some websites are not useful", therefore "Some websites are not informative." (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜒 ∧ ¬ 𝜓)       𝑥(𝜒 ∧ ¬ 𝜑)

Theoremcesaro 2602 "Cesaro", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜓, and 𝜒 exist, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, EAO-2: PeM and SaM therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜒𝜓)    &   𝑥𝜒       𝑥(𝜒 ∧ ¬ 𝜑)

Theoremcamestros 2603 "Camestros", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, no 𝜒 is 𝜓, and 𝜒 exist, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, AEO-2: PaM and SeM therefore SoP.) For example, "All horses have hooves", "No humans have hooves", and humans exist, therefore "Some humans are not horses". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜒 → ¬ 𝜓)    &   𝑥𝜒       𝑥(𝜒 ∧ ¬ 𝜑)

Theoremdatisi 2604 "Datisi", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AII-3: MaP and MiS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜑𝜒)       𝑥(𝜒𝜓)

Theoremdisamis 2605 "Disamis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. (In Aristotelian notation, IAI-3: MiP and MaS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜑𝜒)       𝑥(𝜒𝜓)

Theoremferison 2606 "Ferison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜑 is 𝜒, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, EIO-3: MeP and MiS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜑𝜒)       𝑥(𝜒 ∧ ¬ 𝜓)

Theorembocardo 2607 "Bocardo", one of the syllogisms of Aristotelian logic. Some 𝜑 is not 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, OAO-3: MoP and MaS therefore SoP.) For example, "Some cats have no tails", "All cats are mammals", therefore "Some mammals have no tails". A reorder of disamis 2605; prefer using that instead. (Contributed by David A. Wheeler, 28-Aug-2016.) (New usage is discouraged.)
𝑥(𝜑 ∧ ¬ 𝜓)    &   𝑥(𝜑𝜒)       𝑥(𝜒 ∧ ¬ 𝜓)

Theoremfelapton 2608 "Felapton", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, EAO-3: MeP and MaS therefore SoP.) For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜑𝜒)    &   𝑥𝜑       𝑥(𝜒 ∧ ¬ 𝜓)

Theoremdarapti 2609 "Darapti", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AAI-3: MaP and MaS therefore SiP.) For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜑𝜒)    &   𝑥𝜑       𝑥(𝜒𝜓)

Theoremcalemes 2610 "Calemes", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜓 is 𝜒, therefore no 𝜒 is 𝜑. (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜓 → ¬ 𝜒)       𝑥(𝜒 → ¬ 𝜑)

Theoremdimatis 2611 "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2594 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜓𝜒)       𝑥(𝜒𝜑)

Theoremfresison 2612 "Fresison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓 (PeM), and some 𝜓 is 𝜒 (MiS), therefore some 𝜒 is not 𝜑 (SoP). (In Aristotelian notation, EIO-4: PeM and MiS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜓𝜒)       𝑥(𝜒 ∧ ¬ 𝜑)

Theoremcalemos 2613 "Calemos", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓 (PaM), no 𝜓 is 𝜒 (MeS), and 𝜒 exist, therefore some 𝜒 is not 𝜑 (SoP). (In Aristotelian notation, AEO-4: PaM and MeS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜓 → ¬ 𝜒)    &   𝑥𝜒       𝑥(𝜒 ∧ ¬ 𝜑)

Theoremfesapo 2614 "Fesapo", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜓 exist, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, EAO-4: PeM and MaS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜓𝜒)    &   𝑥𝜓       𝑥(𝜒 ∧ ¬ 𝜑)

Theorembamalip 2615 "Bamalip", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜑 exist, therefore some 𝜒 is 𝜑. (In Aristotelian notation, AAI-4: PaM and MaS therefore SiP.) Like barbari 2596. (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜓𝜒)    &   𝑥𝜑       𝑥(𝜒𝜑)

1.7.2  Intuitionistic logic

Intuitionistic (constructive) logic is similar to classical logic with the notable omission of ax-3 8 and theorems such as exmid 430 or peirce 193. We mostly treat intuitionistic logic in a separate file, iset.mm, which is known as the Intuitionistic Logic Explorer on the web site. However, iset.mm has a number of additional axioms (mainly to replace definitions like df-or 384 and df-ex 1745 which are not valid in intuitionistic logic) and we want to prove those axioms here to demonstrate that adding those axioms in iset.mm does not make iset.mm any less consistent than set.mm.

The following axioms are unchanged between set.mm and iset.mm: ax-1 6, ax-2 7, ax-mp 5, ax-4 1777, ax-11 2074, ax-gen 1762, ax-7 1981, ax-12 2087, ax-8 2032, ax-9 2039, and ax-5 1879.

In this list of axioms, the ones that repeat earlier theorems are marked "(New usage is discouraged.)" so that the earlier theorems will be used consistently in other proofs.

Theoremaxia1 2616 Left 'and' elimination (intuitionistic logic axiom ax-ia1). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
((𝜑𝜓) → 𝜑)

Theoremaxia2 2617 Right 'and' elimination (intuitionistic logic axiom ax-ia2). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
((𝜑𝜓) → 𝜓)

Theoremaxia3 2618 'And' introduction (intuitionistic logic axiom ax-ia3). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜑𝜓)))

Theoremaxin1 2619 'Not' introduction (intuitionistic logic axiom ax-in1). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
((𝜑 → ¬ 𝜑) → ¬ 𝜑)

Theoremaxin2 2620 'Not' elimination (intuitionistic logic axiom ax-in2). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
𝜑 → (𝜑𝜓))

Theoremaxio 2621 Definition of 'or' (intuitionistic logic axiom ax-io). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
(((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Theoremaxi4 2622 Specialization (intuitionistic logic axiom ax-4). This is just sp 2091 by another name. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
(∀𝑥𝜑𝜑)

Theoremaxi5r 2623 Converse of ax-c4 (intuitionistic logic axiom ax-i5r). (Contributed by Jim Kingdon, 31-Dec-2017.)
((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑𝜓))

Theoremaxial 2624 The setvar 𝑥 is not free in 𝑥𝜑 (intuitionistic logic axiom ax-ial). (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
(∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Theoremaxie1 2625 The setvar 𝑥 is not free in 𝑥𝜑 (intuitionistic logic axiom ax-ie1). (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
(∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Theoremaxie2 2626 A key property of existential quantification (intuitionistic logic axiom ax-ie2). (Contributed by Jim Kingdon, 31-Dec-2017.)
(∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))

Theoremaxi9 2627 Axiom of existence (intuitionistic logic axiom ax-i9). In classical logic, this is equivalent to ax-6 1945 but in intuitionistic logic it needs to be stated using the existential quantifier. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
𝑥 𝑥 = 𝑦

Theoremaxi10 2628 Axiom of Quantifier Substitution (intuitionistic logic axiom ax-10). This is just axc11n 2342 by another name. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Theoremaxi12 2629 Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2338 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. (Contributed by Jim Kingdon, 31-Dec-2017.)
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

Theoremaxbnd 2630 Axiom of Bundling (intuitionistic logic axiom ax-bnd). In classical logic, this and axi12 2629 are fairly straightforward consequences of axc9 2338. But in intuitionistic logic, it is not easy to add the extra 𝑥 to axi12 2629 and so we treat the two as separate axioms. (Contributed by Jim Kingdon, 22-Mar-2018.)
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

PART 2  ZF (ZERMELO-FRAENKEL) SET THEORY

Set theory uses the formalism of propositional and predicate calculus to assert properties of arbitrary mathematical objects called "sets." A set can be an element of another set, and this relationship is indicated by the symbol. Starting with the simplest mathematical object, called the empty set, set theory builds up more and more complex structures whose existence follows from the axioms, eventually resulting in extremely complicated sets that we identify with the real numbers and other familiar mathematical objects.

A simplistic concept of sets, sometimes called "naive set theory", is vulnerable to a paradox called "Russell's Paradox" (ru 3467), a discovery that revolutionized the foundations of mathematics and logic. Russell's Paradox spawned the development of set theories that countered the paradox, including the ZF set theory that is most widely used and is defined here.

Except for Extensionality, the axioms basically say, "given an arbitrary set x (and, in the cases of Replacement and Regularity, provided that an antecedent is satisfied), there exists another set y based on or constructed from it, with the stated properties." (The axiom of Extensionality can also be restated this way as shown by axext2 2632.) The individual axiom links provide more detailed descriptions. We derive the redundant ZF axioms of Separation, Null Set, and Pairing from the others as theorems.

2.1.1  Introduce the Axiom of Extensionality

Axiomax-ext 2631* Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It states that two sets are identical if they contain the same elements. Axiom Ext of [BellMachover] p. 461.

Set theory can also be formulated with a single primitive predicate on top of traditional predicate calculus without equality. In that case the Axiom of Extensionality becomes (∀𝑤(𝑤𝑥𝑤𝑦) → (𝑥𝑧𝑦𝑧)), and equality 𝑥 = 𝑦 is defined as 𝑤(𝑤𝑥𝑤𝑦). All of the usual axioms of equality then become theorems of set theory. See, for example, Axiom 1 of [TakeutiZaring] p. 8.

To use the above "equality-free" version of Extensionality with Metamath's predicate calculus axioms, we would rewrite all axioms involving equality with equality expanded according to the above definition. Some of those axioms may be provable from ax-ext and would become redundant, but this hasn't been studied carefully.

General remarks: Our set theory axioms are presented using defined connectives (, , etc.) for convenience. However, it is implicitly understood that the actual axioms use only the primitive connectives , ¬, , =, and . It is straightforward to establish the equivalence between the actual axioms and the ones we display, and we will not do so.

It is important to understand that strictly speaking, all of our set theory axioms are really schemes that represent an infinite number of actual axioms. This is inherent in the design of Metamath ("metavariable math"), which manipulates only metavariables. For example, the metavariable 𝑥 in ax-ext 2631 can represent any actual variable v1, v2, v3,... . Distinct variable restrictions (\$d) prevent us from substituting say v1 for both 𝑥 and 𝑧. This is in contrast to typical textbook presentations that present actual axioms (except for Replacement ax-rep 4804, which involves a wff metavariable). In practice, though, the theorems and proofs are essentially the same. The \$d restrictions make each of the infinite axioms generated by the ax-ext 2631 scheme exactly logically equivalent to each other and in particular to the actual axiom of the textbook version. (Contributed by NM, 21-May-1993.)

(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)

Theoremaxext2 2632* The Axiom of Extensionality (ax-ext 2631) restated so that it postulates the existence of a set 𝑧 given two arbitrary sets 𝑥 and 𝑦. This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003.)
𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)

Theoremaxext3 2633* A generalization of the Axiom of Extensionality in which 𝑥 and 𝑦 need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Remove dependencies on ax-10 2059, ax-12 2087, ax-13 2282. (Revised by Wolf Lammen, 9-Dec-2019.)
(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)

Theoremaxext3ALT 2634* Alternate proof of axext3 2633, shorter but uses more axioms. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)

Theoremaxext4 2635* A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2631 and df-cleq 2644. (Contributed by NM, 14-Nov-2008.)
(𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))

Theorembm1.1 2636* Any set defined by a property is the only set defined by that property. Theorem 1.1 of [BellMachover] p. 462. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Wolf Lammen, 13-Nov-2019.)
𝑥𝜑       (∃𝑥𝑦(𝑦𝑥𝜑) → ∃!𝑥𝑦(𝑦𝑥𝜑))

2.1.2  Class abstractions (a.k.a. class builders)

Syntaxcab 2637 Introduce the class builder or class abstraction notation ("the class of sets 𝑥 such that 𝜑 is true"). Our class variables 𝐴, 𝐵, etc. range over class builders (implicitly in the case of defined class terms such as df-nul 3949). Note that a setvar variable can be expressed as a class builder per theorem cvjust 2646, justifying the assignment of setvar variables to class variables via the use of cv 1522.
class {𝑥𝜑}

Definitiondf-clab 2638 Define class abstraction notation (so-called by Quine), also called a "class builder" in the literature. 𝑥 and 𝑦 need not be distinct. Definition 2.1 of [Quine] p. 16. Typically, 𝜑 will have 𝑦 as a free variable, and "{𝑦𝜑} " is read "the class of all sets 𝑦 such that 𝜑(𝑦) is true." We do not define {𝑦𝜑} in isolation but only as part of an expression that extends or "overloads" the relationship.

This is our first use of the symbol to connect classes instead of sets. The syntax definition wcel 2030, which extends or "overloads" the wel 2031 definition connecting setvar variables, requires that both sides of be classes. In df-cleq 2644 and df-clel 2647, we introduce a new kind of variable (class variable) that can be substituted with expressions such as {𝑦𝜑}. In the present definition, the 𝑥 on the left-hand side is a setvar variable. Syntax definition cv 1522 allows us to substitute a setvar variable 𝑥 for a class variable: all sets are classes by cvjust 2646 (but not necessarily vice-versa). For a full description of how classes are introduced and how to recover the primitive language, see the discussion in Quine (and under abeq2 2761 for a quick overview).

Because class variables can be substituted with compound expressions and setvar variables cannot, it is often useful to convert a theorem containing a free setvar variable to a more general version with a class variable. This is done with theorems such as vtoclg 3297 which is used, for example, to convert elirrv 8542 to elirr 8543.

This is called the "axiom of class comprehension" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms. He calls the construction {𝑦𝜑} a "class term".

While the three class definitions df-clab 2638, df-cleq 2644, and df-clel 2647 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker.

For a general discussion of the theory of classes, see mmset.html#class. (Contributed by NM, 26-May-1993.)

(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)

Theoremabid 2639 Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.)
(𝑥 ∈ {𝑥𝜑} ↔ 𝜑)

Theoremhbab1 2640* Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 26-May-1993.)
(𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})

Theoremnfsab1 2641* Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥 𝑦 ∈ {𝑥𝜑}

Theoremhbab 2642* Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.)
(𝜑 → ∀𝑥𝜑)       (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})

Theoremnfsab 2643* Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥 𝑧 ∈ {𝑦𝜑}

Definitiondf-cleq 2644* Define the equality connective between classes. Definition 2.7 of [Quine] p. 18. Also Definition 4.5 of [TakeutiZaring] p. 13; Chapter 4 provides its justification and methods for eliminating it. Note that its elimination will not necessarily result in a single wff in the original language but possibly a "scheme" of wffs.

This is an example of a somewhat "risky" definition, meaning that it has a more complex than usual soundness justification (outside of Metamath), because it "overloads" or reuses the existing equality symbol rather than introducing a new symbol. This allows us to make statements that may not hold for the original symbol. For example, it permits us to deduce 𝑦 = 𝑧 ↔ ∀𝑥(𝑥𝑦𝑥𝑧), which is not a theorem of logic but rather presupposes the Axiom of Extensionality (see theorem axext4 2635). We therefore include this axiom as a hypothesis, so that the use of Extensionality is properly indicated.

In the form of dfcleq 2645, this is called the "axiom of extensionality" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms.

While the three class definitions df-clab 2638, df-cleq 2644, and df-clel 2647 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker.

For a general discussion of the theory of classes, see mmset.html#class. (Contributed by NM, 15-Sep-1993.)

(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Theoremdfcleq 2645* The same as df-cleq 2644 with the hypothesis removed using the Axiom of Extensionality ax-ext 2631. (Contributed by NM, 15-Sep-1993.) Revised to make use of axext3 2633 instead of ax-ext 2631, so that ax-9 2039 will appear in lists of axioms used by a proof, since df-cleq 2644 implies ax-9 2039 by theorem bj-ax9 33015. We may revisit this in the future. (Revised by NM, 28-Oct-2021.) (Proof modification is discouraged.)
(𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Theoremcvjust 2646* Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1522, which allows us to substitute a setvar variable for a class variable. See also cab 2637 and df-clab 2638. Note that this is not a rigorous justification, because cv 1522 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.)
𝑥 = {𝑦𝑦𝑥}

Definitiondf-clel 2647* Define the membership connective between classes. Theorem 6.3 of [Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we adopt as a definition. See these references for its metalogical justification. Note that like df-cleq 2644 it extends or "overloads" the use of the existing membership symbol, but unlike df-cleq 2644 it does not strengthen the set of valid wffs of logic when the class variables are replaced with setvar variables (see cleljust 2038), so we don't include any set theory axiom as a hypothesis. See also comments about the syntax under df-clab 2638. Alternate definitions of 𝐴𝐵 (but that require either 𝐴 or 𝐵 to be a set) are shown by clel2 3371, clel3 3373, and clel4 3374.

This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms.

While the three class definitions df-clab 2638, df-cleq 2644, and df-clel 2647 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker.

For a general discussion of the theory of classes, see mmset.html#class. (Contributed by NM, 26-May-1993.)

(𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))

Theoremeqriv 2648* Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.)
(𝑥𝐴𝑥𝐵)       𝐴 = 𝐵

Theoremeqrdv 2649* Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.)
(𝜑 → (𝑥𝐴𝑥𝐵))       (𝜑𝐴 = 𝐵)

Theoremeqrdav 2650* Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
((𝜑𝑥𝐴) → 𝑥𝐶)    &   ((𝜑𝑥𝐵) → 𝑥𝐶)    &   ((𝜑𝑥𝐶) → (𝑥𝐴𝑥𝐵))       (𝜑𝐴 = 𝐵)

Theoremeqid 2651 Law of identity (reflexivity of class equality). Theorem 6.4 of [Quine] p. 41.

This is part of Frege's eighth axiom per Proposition 54 of [Frege1879] p. 50; see also biid 251. An early mention of this law can be found in Aristotle, Metaphysics, Z.17, 1041a10-20. (Thanks to Stefan Allan and BJ for this information.) (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 14-Oct-2017.)

𝐴 = 𝐴

Theoremeqidd 2652 Class identity law with antecedent. (Contributed by NM, 21-Aug-2008.)
(𝜑𝐴 = 𝐴)

Theoremeqeq1d 2653 Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐶))

Theoremeqeq1dALT 2654 Shorter proof of eqeq1d 2653 based on more axioms. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 19-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐶))

Theoremeqeq1 2655 Equality implies equivalence of equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
(𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))

Theoremeqeq1i 2656 Inference from equality to equivalence of equalities. (Contributed by NM, 15-Jul-1993.)
𝐴 = 𝐵       (𝐴 = 𝐶𝐵 = 𝐶)

Theoremeqcomd 2657 Deduction from commutative law for class equality. (Contributed by NM, 15-Aug-1994.) Allow shortening of eqcom 2658. (Revised by Wolf Lammen, 19-Nov-2019.)
(𝜑𝐴 = 𝐵)       (𝜑𝐵 = 𝐴)

Theoremeqcom 2658 Commutative law for class equality. Theorem 6.5 of [Quine] p. 41. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
(𝐴 = 𝐵𝐵 = 𝐴)

Theoremeqcoms 2659 Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 24-Jun-1993.)
(𝐴 = 𝐵𝜑)       (𝐵 = 𝐴𝜑)

Theoremeqcomi 2660 Inference from commutative law for class equality. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵       𝐵 = 𝐴

Theoremeqeq2d 2661 Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) Allow shortening of eqeq2 2662. (Revised by Wolf Lammen, 19-Nov-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶 = 𝐴𝐶 = 𝐵))

Theoremeqeq2 2662 Equality implies equivalence of equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
(𝐴 = 𝐵 → (𝐶 = 𝐴𝐶 = 𝐵))

Theoremeqeq2i 2663 Inference from equality to equivalence of equalities. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵       (𝐶 = 𝐴𝐶 = 𝐵)

Theoremeqeq12 2664 Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))

Theoremeqeq12i 2665 A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴 = 𝐶𝐵 = 𝐷)

Theoremeqeq12d 2666 A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Theoremeqeqan12d 2667 A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2668. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴 = 𝐶𝐵 = 𝐷))

Theoremeqeqan12dALT 2668 Alternate proof of eqeqan12d 2667. This proof has one more step but one fewer essential step. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴 = 𝐶𝐵 = 𝐷))

Theoremeqeqan12rd 2669 A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜓𝜑) → (𝐴 = 𝐶𝐵 = 𝐷))

Theoremeqtr 2670 Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.)
((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐶)

Theoremeqtr2 2671 A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)

Theoremeqtr3 2672 A transitive law for class equality. (Contributed by NM, 20-May-2005.)
((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)

Theoremeqtri 2673 An equality transitivity inference. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵    &   𝐵 = 𝐶       𝐴 = 𝐶

Theoremeqtr2i 2674 An equality transitivity inference. (Contributed by NM, 21-Feb-1995.)
𝐴 = 𝐵    &   𝐵 = 𝐶       𝐶 = 𝐴

Theoremeqtr3i 2675 An equality transitivity inference. (Contributed by NM, 6-May-1994.)
𝐴 = 𝐵    &   𝐴 = 𝐶       𝐵 = 𝐶

Theoremeqtr4i 2676 An equality transitivity inference. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵    &   𝐶 = 𝐵       𝐴 = 𝐶

Theorem3eqtri 2677 An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.)
𝐴 = 𝐵    &   𝐵 = 𝐶    &   𝐶 = 𝐷       𝐴 = 𝐷

Theorem3eqtrri 2678 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐵 = 𝐶    &   𝐶 = 𝐷       𝐷 = 𝐴

Theorem3eqtr2i 2679 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.)
𝐴 = 𝐵    &   𝐶 = 𝐵    &   𝐶 = 𝐷       𝐴 = 𝐷

Theorem3eqtr2ri 2680 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐵    &   𝐶 = 𝐷       𝐷 = 𝐴

Theorem3eqtr3i 2681 An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶 = 𝐷

Theorem3eqtr3ri 2682 An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.)
𝐴 = 𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐷 = 𝐶

Theorem3eqtr4i 2683 An inference from three chained equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶 = 𝐷

Theorem3eqtr4ri 2684 An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐷 = 𝐶

Theoremeqtrd 2685 An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)

Theoremeqtr2d 2686 An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)

Theoremeqtr3d 2687 An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)       (𝜑𝐵 = 𝐶)

Theoremeqtr4d 2688 An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴 = 𝐶)

Theorem3eqtrd 2689 A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐴 = 𝐷)

Theorem3eqtrrd 2690 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐷 = 𝐴)

Theorem3eqtr2d 2691 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐴 = 𝐷)

Theorem3eqtr2rd 2692 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐷 = 𝐴)

Theorem3eqtr3d 2693 A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶 = 𝐷)

Theorem3eqtr3rd 2694 A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐷 = 𝐶)

Theorem3eqtr4d 2695 A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶 = 𝐷)

Theorem3eqtr4rd 2696 A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐷 = 𝐶)

Theoremsyl5eq 2697 An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)

Theoremsyl5req 2698 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)

Theoremsyl5eqr 2699 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
𝐵 = 𝐴    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)

Theoremsyl5reqr 2700 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
𝐵 = 𝐴    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
 Copyright terms: Public domain < Previous  Next >