HomeHome Metamath Proof Explorer
Theorem List (p. 274 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28623)
  Hilbert Space Explorer  Hilbert Space Explorer
(28624-30146)
  Users' Mathboxes  Users' Mathboxes
(30147-44804)
 

Theorem List for Metamath Proof Explorer - 27301-27400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrgrprc 27301 The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
{𝑔𝑔 RegGraph 0} ∉ V
 
Theoremrgrprcx 27302* The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
{𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
 
Theoremrgrx0ndm 27303* 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020.)
𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘})       0 ∉ dom 𝑅
 
Theoremrgrx0nd 27304* The potentially alternatively defined k-regular graphs is not defined for k=0. (Contributed by AV, 28-Dec-2020.)
𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘})       (𝑅‘0) = ∅
 
16.3  Walks, paths and cycles

A "walk" in a graph is usually defined for simple graphs, multigraphs or even pseudographs as "alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see definition of [Bollobas] p. 4, or "A walk (of length k) in a graph is a nonempty alternating sequence v0 e0 v1 e1 ... e(k-1) vk of vertices and edges in G such that ei = { vi , vi+1 } for all i < k.", see definition of [Diestel] p. 10.

Formalizing these definitions (mainly by representing the indexed vertices and edges by functions), a walk is represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges (e is a third function enumerating the edges within the graph, not within the walk), and p enumerates the vertices, see df-wlks 27309. Hence a walk (of length n) is represented by the following sequence:

p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n).

Alternatively, one could define a walk as a function 𝑤:(0...(2 · 𝑛))⟶((Edg‘𝐺) ∪ (Vtx‘𝐺)) such that for all 0 ≤ 𝑘𝑛, (𝑤‘(2 · 𝑘)) ∈ (Vtx‘𝐺) and for all 0 ≤ 𝑘 ≤ (𝑛 − 1), (𝑤‘((2 · 𝑘) + 1)) ∈ (Edg‘𝐺) and {(𝑤‘(2 · 𝑘)), (𝑤‘((2 · 𝑘) + 2))} ⊆ (𝑤‘((2 · 𝑘) + 1)).

Based on our definition of Walks, the class of all walks, more restrictive constructs are defined:

* Trails (df-trls 27402): A "walk is called a trail if all its edges are distinct.", see Definition of [Bollobas] p. 5, i.e., f(i) =/= f(j) if i =/= j.

* Paths (df-pths 27425): A path is a walk whose vertices except the first and the last vertex are distinct, i.e., p(i) =/= p(j) if i < j, except possibly when i = 0 and j = n.

* SPaths (simple paths, df-spths 27426): A simple path "is a walk with distinct vertices.", see Notation of [Bollobas] p. 5, i.e., p(i) =/= p(j) if i =/= j.

* ClWalks (closed walks, df-clwlks 27480): A walk whose endvertices coincide is called a closed walk, i.e., p(0) = p(n).

* Circuits (df-crcts 27495): "A trail whose endvertices coincide (a closed trail) is called a circuit." (see Definition of [Bollobas] p. 5), i.e., f(i) =/= f(j) if i =/= j and p(0) = p(n). Equivalently, a circuit is a closed walk with distinct edges.

* Cycles (df-cycls 27496): A path whose endvertices coincide (a closed path) is called a cycle, i.e., p(i) =/= p(j) if i =/= j, except i = 0 and j = n, and p(0) = p(n). Equivalently, a cycle is a closed walk with distinct vertices.

* EulerPaths (Eulerian paths, df-eupth 27905): An Eulerian path is "a trail containing all edges [of the graph]" (see definition in [Bollobas] p. 16), i.e., f(i) =/= f(j) if i =/= j and for all edges e(x) there is an 1 <= i <= n with e(x) = e(f(i)). Note, however, that an Eulerian path needs not be a path.

* Eulerian circuit: An Eulerian circuit (called Euler tour in the definition in [Diestel] p. 22) is "a circuit in a graph containing all the edges" (see definition in [Bollobas] p. 16), i.e., f(i) =/= f(j) if i =/= j, p(0) = p(n) and for all edges e(x) there is an 1 <= i <= n with e(x) = e(f(i)).

Hierarchy of all kinds of walks (apply ssriv 3970 and elopabran 5440 to the mentioned theorems to obtain the following subset relationships, as available for clwlkiswlk 27483, see clwlkwlk 27484 and clwlkswks 27485):

* Trails are walks (trliswlk 27407): (Trails‘𝐺) ⊆ (Walks‘𝐺)

* Paths are trails (pthistrl 27434): (Paths‘𝐺) ⊆ (Trails‘𝐺)

* Simple paths are paths (spthispth 27435): (SPaths‘𝐺) ⊆ (Paths‘𝐺)

* Closed walks are walks (clwlkiswlk 27483): (ClWalks‘𝐺) ⊆ (Walks‘𝐺)

* Circuits are closed walks (crctisclwlk 27503): (Circuits‘𝐺) ⊆ (ClWalks‘𝐺)

* Circuits are trails (crctistrl 27504): (Circuits‘𝐺) ⊆ (Trails‘𝐺)

* Cycles are paths (cyclispth 27506): (Cycles‘𝐺) ⊆ (Paths‘𝐺)

* Cycles are circuits (cycliscrct 27508): (Cycles‘𝐺) ⊆ (Circuits‘𝐺)

* (Non-trivial) cycles are not simple paths (cyclnspth 27509): (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃))

* Eulerian paths are trails (eupthistrl 27918): (EulerPaths‘𝐺) ⊆ (Trails‘𝐺)

Often, it is sufficient to refer to a walk by the natural sequence of its vertices, i.e., omitting its edges in its representation: p(0) p(1) ... p(n-1) p(n), see the corresponding remark in [Diestel] p. 6. The concept of a Word, see df-word 13852, is the appropriate way to define such a sequence (being finite and starting at index 0) of vertices. Therefore, it is used in definition df-wwlks 27536 for WWalks, and the representation of a walk as sequence of its vertices is called "walk as word".

Only for simple pseudographs, however, the edges can be uniquely reconstructed from such a representation. In this case, the general definitions of walks and the definition of walks as words are equivalent, see wlkiswwlks 27582. In other cases, there could be more than one edge between two adjacent vertices in the walk (in a multigraph), or two adjacent vertices could be connected by two different hyperedges involving additional vertices (in a hypergraph).

Based on this definition of WWalks, the class of all walks as word, more restrictive constructs are defined analogously to the general definition of a walk:

* WWalksN (walks of length N as word, df-wwlksn 27537): n = N

* WSPathsN (simple paths of length N as word, df-wspthsn 27539): p(i) =/= p(j) if i =/= j and n = N

* ClWWalks (closed walks as word, df-clwwlk 27688): p(0) = p(n)

* ClWWalksN (closed walks of length N as word, df-clwwlkn 27731): p(0) = p(n) and n = N

Finally, there are a couple of definitions for (special) walks 𝐹, 𝑃 having fixed endpoints 𝐴 and 𝐵:

* Walks with particular endpoints (df-wlkson 27310): 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃

* Trails with particular endpoints (df-trlson 27403): 𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃

* Paths with particular endpoints (df-pthson 27427): 𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃

* Simple paths with particular endpoints (df-spthson 27428): 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃

* Walks of a fixed length 𝑁 as words with particular endpoints (df-wwlksnon 27538): (𝐴(𝑁 WWalksNOn 𝐺)𝐵)

* Simple paths of a fixed length 𝑁 as words with particular endpoints (df-wspthsnon 27540): (𝐴(𝑁 WSPathsNOn 𝐺)𝐵)

* Closed Walks of a fixed length 𝑁 as words anchored at a particular vertex 𝐴 (df-wwlksnon 27538): (𝐴(ClWWalksNOn‘𝐺)𝑁)

 
16.3.1  Walks

A "walk" within a graph is usually defined for simple graphs, multigraphs or even pseudographs as "alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. This definition requires the edges to connect two vertices at most (loops are also allowed: if e(i) is a loop, then x(i-1) = x(i)). For hypergraphs containing hyperedges (i.e. edges connecting more than two vertices), however, a more general definition is needed. Two approaches for a definition applicable for arbitrary hypergraphs are used in the literature: "walks on the vertex level" and "walks on the edge level" (see Aksoy, Joslyn, Marrero, Praggastis, Purvine: "Hypernetwork science via high-order hypergraph walks", June 2020, https://doi.org/10.1140/epjds/s13688-020-00231-0):

"walks on the edge level": For a positive integer s, an s-walk of length k between hyperedges f and g is a sequence of hyperedges, f=e(0), e(1), ... , e(k)=g, where for j=1, ... , k, e(j-1) =/= e(j) and e(j-1) and e(j) have at least s vertices in common (according to Aksoy et al.).

"walks on the vertex level": For a positive integer s, an s-walk of length k between vertices a and b is a sequence of vertices, a=v(0), v(1), ... , v(k)=b, where for j=1, ... , k, v(j-1) and v(j) are connected by at least s edges (analogous to Aksoy et al.).

There are two imperfections for the definition for "walks on the edge level": one is that a walk of length 1 consists of two edges (or a walk of length 0 consists of one edge), whereas a walk of length 1 on the vertex level consists of two vertices and one edge (or a walk of length 0 consists of one vertex and no edge). The other is that edges, especially loops, can be traversed only once (and not repeatedly) because of the condition e(j-1) =/= e(j). The latter is avoided in the definition for EdgWalks, see df-ewlks 27308. To be compatible with the (usual) definition of walks for pseudographs, walks also suitable for arbitrary hypergraphs are defined "on the vertex level" in the following as Walks, see df-wlks 27309, restricting s to 1. wlk1ewlk 27349 shows that such a 1-walk "on the vertex level" induces a 1-walk "on the edge level".

 
Syntaxcewlks 27305 Extend class notation with s-walks "on the edge level" (of a hypergraph).
class EdgWalks
 
Syntaxcwlks 27306 Extend class notation with walks (i.e. 1-walks) (of a hypergraph).
class Walks
 
Syntaxcwlkson 27307 Extend class notation with walks between two vertices (within a graph).
class WalksOn
 
Definitiondf-ewlks 27308* Define the set of all s-walks of edges (in a hypergraph) corresponding to s-walks "on the edge level" discussed in Aksoy et al. For an extended nonnegative integer s, an s-walk is a sequence of hyperedges, e(0), e(1), ... , e(k), where e(j-1) and e(j) have at least s vertices in common (for j=1, ... , k). In contrast to the definition in Aksoy et al., 𝑠 = 0 (a 0-walk is an arbitrary sequence of hyperedges) and 𝑠 = +∞ (then the number of common vertices of two adjacent hyperedges must be infinite) are allowed. Furthermore, it is not forbidden that adjacent hyperedges are equal. (Contributed by AV, 4-Jan-2021.)
EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))})
 
Definitiondf-wlks 27309* Define the set of all walks (in a hypergraph). Such walks correspond to the s-walks "on the vertex level" (with s = 1), and also to 1-walks "on the edge level" (see wlk1walk 27348) discussed in Aksoy et al. The predicate 𝐹(Walks‘𝐺)𝑃 can be read as "The pair 𝐹, 𝑃 represents a walk in a graph 𝐺", see also iswlk 27320.

The condition {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘)) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e. (𝑝𝑘) = (𝑝‘(𝑘 + 1)) should be allowed only if there is a loop at (𝑝𝑘). Otherwise, C would be fulfilled by each edge containing (𝑝𝑘).

According to the definition of [Bollobas] p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020.)

Walks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))})
 
Definitiondf-wlkson 27310* Define the collection of walks with particular endpoints (in a hypergraph). The predicate 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 can be read as "The pair 𝐹, 𝑃 represents a walk from vertex 𝐴 to vertex 𝐵 in a graph 𝐺", see also iswlkon 27367. This corresponds to the "x0-x(l)-walks", see Definition in [Bollobas] p. 5. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)
WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}))
 
Theoremewlksfval 27311* The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
 
Theoremisewlk 27312* Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐺𝑊𝑆 ∈ ℕ0*𝐹𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))))
 
Theoremewlkprop 27313* Properties of an s-walk of edges. (Contributed by AV, 4-Jan-2021.)
𝐼 = (iEdg‘𝐺)       (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
 
Theoremewlkinedg 27314 The intersection (common vertices) of two adjacent edges in an s-walk of edges. (Contributed by AV, 4-Jan-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝐾 ∈ (1..^(♯‘𝐹))) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾)))))
 
Theoremewlkle 27315 An s-walk of edges is also a t-walk of edges if 𝑡𝑠. (Contributed by AV, 4-Jan-2021.)
((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))
 
Theoremupgrewlkle2 27316 In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021.)
((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2)
 
Theoremwkslem1 27317 Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
(𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))
 
Theoremwkslem2 27318 Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃𝐶), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃𝐶)} ⊆ (𝐼‘(𝐹𝐵)))))
 
Theoremwksfval 27319* The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺𝑊 → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
 
Theoremiswlk 27320* Properties of a pair of functions to be a walk. (Contributed by AV, 30-Dec-2020.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 
Theoremwlkprop 27321* Properties of a walk. (Contributed by AV, 5-Nov-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
 
Theoremwlkv 27322 The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 3-Feb-2021.)
(𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
 
Theoremiswlkg 27323* Generalization of iswlk 27320: Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺𝑊 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 
Theoremwlkf 27324 The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021.)
𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
 
Theoremwlkcl 27325 A walk has length ♯(𝐹), which is an integer. Formerly proven for an Eulerian path, see eupthcl 27917. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
(𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
 
Theoremwlkp 27326 The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
 
Theoremwlkpwrd 27327 The sequence of vertices of a walk is a word over the set of vertices. (Contributed by AV, 27-Jan-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word 𝑉)
 
Theoremwlklenvp1 27328 The number of vertices of a walk (in an undirected graph) is the number of its edges plus 1. (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 1-May-2021.)
(𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
 
Theoremwksv 27329* The class of walks is a set. (Contributed by AV, 15-Jan-2021.)
{⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
 
Theoremwlkn0 27330 The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018.) (Revised by AV, 2-Jan-2021.)
(𝐹(Walks‘𝐺)𝑃𝑃 ≠ ∅)
 
Theoremwlklenvm1 27331 The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018.) (Revised by AV, 2-Jan-2021.)
(𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1))
 
Theoremifpsnprss 27332 Lemma for wlkvtxeledg 27333: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.)
(if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)
 
Theoremwlkvtxeledg 27333* Each pair of adjacent vertices in a walk is a subset of an edge. (Contributed by AV, 28-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.)
𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
 
Theoremwlkvtxiedg 27334* The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.)
𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
 
Theoremrelwlk 27335 The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.)
Rel (Walks‘𝐺)
 
Theoremwlkvv 27336 If there is at least one walk in the graph, all walks are in the universal class of ordered pairs. (Contributed by AV, 2-Jan-2021.)
((1st𝑊)(Walks‘𝐺)(2nd𝑊) → 𝑊 ∈ (V × V))
 
Theoremwlkop 27337 A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.)
(𝑊 ∈ (Walks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
 
Theoremwlkcpr 27338 A walk as class with two components. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
(𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
 
Theoremwlk2f 27339* If there is a walk 𝑊 there is a pair of functions representing this walk. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
(𝑊 ∈ (Walks‘𝐺) → ∃𝑓𝑝 𝑓(Walks‘𝐺)𝑝)
 
Theoremwlkcomp 27340* A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       ((𝐺𝑈𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 
Theoremwlkcompim 27341* Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
 
Theoremwlkelwrd 27342 The components of a walk are words/functions over a zero based range of integers. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉))
 
Theoremwlkeq 27343* Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
 
Theoremedginwlk 27344 The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 9-Dec-2021.)
𝐼 = (iEdg‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((Fun 𝐼𝐹 ∈ Word dom 𝐼𝐾 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝐾)) ∈ 𝐸)
 
Theoremupgredginwlk 27345 The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.)
𝐼 = (iEdg‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝐾 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹𝐾)) ∈ 𝐸))
 
Theoremiedginwlk 27346 The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021.)
𝐼 = (iEdg‘𝐺)       ((Fun 𝐼𝐹(Walks‘𝐺)𝑃𝑋 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑋)) ∈ ran 𝐼)
 
Theoremwlkl1loop 27347 A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.)
(((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
 
Theoremwlk1walk 27348* A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.)
𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
 
Theoremwlk1ewlk 27349 A walk is an s-walk "on the edge level" (with s=1) according to Aksoy et al. (Contributed by AV, 5-Jan-2021.)
(𝐹(Walks‘𝐺)𝑃𝐹 ∈ (𝐺 EdgWalks 1))
 
Theoremupgriswlk 27350* Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 28-Oct-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
 
Theoremupgrwlkedg 27351* The edges of a walk in a pseudograph join exactly the two corresponding adjacent vertices in the walk. (Contributed by AV, 27-Feb-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
 
Theoremupgrwlkcompim 27352* Implications for the properties of the components of a walk in a pseudograph. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 14-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
 
Theoremwlkvtxedg 27353* The vertices of a walk are connected by edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
𝐸 = (Edg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒𝐸 {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
 
Theoremupgrwlkvtxedg 27354* The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
 
Theoremuspgr2wlkeq 27355* Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.)
((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
 
Theoremuspgr2wlkeq2 27356 Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.)
(((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐵)) = 𝑁)) → ((2nd𝐴) = (2nd𝐵) → 𝐴 = 𝐵))
 
Theoremuspgr2wlkeqi 27357 Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.)
((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → 𝐴 = 𝐵)
 
Theoremumgrwlknloop 27358* In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 3-Jan-2021.)
((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
 
TheoremwlkRes 27359* Restrictions of walks (i.e. special kinds of walks, for example paths - see pthsfval 27430) are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.)
(𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝)       {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑊𝐺)𝑝𝜑)} ∈ V
 
Theoremwlkv0 27360 If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
(((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
 
Theoremg0wlk0 27361 There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)
 
Theorem0wlk0 27362 There is no walk for the empty set, i.e. in a null graph. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
(Walks‘∅) = ∅
 
Theoremwlk0prc 27363 There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅)
 
Theoremwlklenvclwlk 27364 The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by JJ, 14-Jan-2024.)
(𝑊 ∈ Word (Vtx‘𝐺) → (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊)))
 
TheoremwlklenvclwlkOLD 27365 Obsolete version of wlklenvclwlk 27364 as of 14-Jan-2024. The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊)) → (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊)))
 
Theoremwlkson 27366* The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)})
 
Theoremiswlkon 27367 Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.)
𝑉 = (Vtx‘𝐺)       (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
 
Theoremwlkonprop 27368 Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 31-Dec-2020.) (Proof shortened by AV, 16-Jan-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
 
Theoremwlkpvtx 27369 A walk connects vertices. (Contributed by AV, 22-Feb-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0...(♯‘𝐹)) → (𝑃𝑁) ∈ 𝑉))
 
Theoremwlkepvtx 27370 The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(♯‘𝐹)) ∈ 𝑉))
 
Theoremwlkoniswlk 27371 A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 2-Jan-2021.)
(𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Walks‘𝐺)𝑃)
 
Theoremwlkonwlk 27372 A walk is a walk between its endpoints. (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 31-Jan-2021.)
(𝐹(Walks‘𝐺)𝑃𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃)
 
Theoremwlkonwlk1l 27373 A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.)
(𝜑𝐹(Walks‘𝐺)𝑃)       (𝜑𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃)
 
Theoremwlksoneq1eq2 27374 Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.)
((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremwlkonl1iedg 27375* If there is a walk between two vertices 𝐴 and 𝐵 at least of length 1, then the start vertex 𝐴 is incident with an edge. (Contributed by AV, 4-Apr-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
 
Theoremwlkon2n0 27376 The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021.)
((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐴𝐵) → (♯‘𝐹) ≠ 0)
 
Theorem2wlklem 27377* Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
(∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
 
Theoremupgr2wlk 27378 Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
 
Theoremwlkreslem 27379 Lemma for wlkres 27380. (Contributed by AV, 5-Mar-2021.) (Revised by AV, 30-Nov-2022.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   (𝜑𝑁 ∈ (0..^(♯‘𝐹)))    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑𝑆 ∈ V)
 
Theoremwlkres 27380 The restriction 𝐻, 𝑄 of a walk 𝐹, 𝑃 to an initial segment of the walk (of length 𝑁) forms a walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 27922. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   (𝜑𝑁 ∈ (0..^(♯‘𝐹)))    &   (𝜑 → (Vtx‘𝑆) = 𝑉)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))    &   𝐻 = (𝐹 prefix 𝑁)    &   𝑄 = (𝑃 ↾ (0...𝑁))       (𝜑𝐻(Walks‘𝑆)𝑄)
 
Theoremredwlklem 27381 Lemma for redwlk 27382. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉)
 
Theoremredwlk 27382 A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))
 
Theoremwlkp1lem1 27383 Lemma for wlkp1 27391. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)       (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
 
Theoremwlkp1lem2 27384 Lemma for wlkp1 27391. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})       (𝜑 → (♯‘𝐻) = (𝑁 + 1))
 
Theoremwlkp1lem3 27385 Lemma for wlkp1 27391. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})       (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
 
Theoremwlkp1lem4 27386 Lemma for wlkp1 27391. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
 
Theoremwlkp1lem5 27387* Lemma for wlkp1 27391. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
 
Theoremwlkp1lem6 27388* Lemma for wlkp1 27391. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
 
Theoremwlkp1lem7 27389 Lemma for wlkp1 27391. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
 
Theoremwlkp1lem8 27390* Lemma for wlkp1 27391. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)    &   ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})       (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
 
Theoremwlkp1 27391 Append one path segment (edge) 𝐸 from vertex (𝑃𝑁) to a vertex 𝐶 to a walk 𝐹, 𝑃 to become a walk 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 27923. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 6-Mar-2021.) (Proof shortened by AV, 18-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (♯‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)    &   ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})       (𝜑𝐻(Walks‘𝑆)𝑄)
 
Theoremwlkdlem1 27392* Lemma 1 for wlkd 27396. (Contributed by AV, 7-Feb-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)       (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
 
Theoremwlkdlem2 27393* Lemma 2 for wlkd 27396. (Contributed by AV, 7-Feb-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))       (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
 
Theoremwlkdlem3 27394* Lemma 3 for wlkd 27396. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))       (𝜑𝐹 ∈ Word dom 𝐼)
 
Theoremwlkdlem4 27395* Lemma 4 for wlkd 27396. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 23-Jan-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))    &   (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))       (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
 
Theoremwlkd 27396* Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))    &   (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))    &   (𝜑𝐺𝑊)    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)       (𝜑𝐹(Walks‘𝐺)𝑃)
 
16.3.2  Walks for loop-free graphs
 
Theoremlfgrwlkprop 27397* Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐹(Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
 
Theoremlfgriswlk 27398* Conditions for a pair of functions to be a walk in a loop-free graph. (Contributed by AV, 28-Jan-2021.)
𝐼 = (iEdg‘𝐺)    &   𝑉 = (Vtx‘𝐺)       ((𝐺𝑊𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 
Theoremlfgrwlknloop 27399* In a loop-free graph, each walk has no loops! (Contributed by AV, 2-Feb-2021.)
𝐼 = (iEdg‘𝐺)    &   𝑉 = (Vtx‘𝐺)       ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
 
16.3.3  Trails
 
Syntaxctrls 27400 Extend class notation with trails (within a graph).
class Trails
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44804
  Copyright terms: Public domain < Previous  Next >