![]() |
Metamath
Proof Explorer Theorem List (p. 284 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | shsel 28301* | Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | ||
Theorem | shsel3 28302* | Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 −ℎ 𝑦))) | ||
Theorem | shseli 28303* | Membership in subspace sum. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
Theorem | shscli 28304 | Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ | ||
Theorem | shscl 28305 | Closure of subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ∈ Sℋ ) | ||
Theorem | shscom 28306 | Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) | ||
Theorem | shsva 28307 | Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
Theorem | shsel1 28308 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
Theorem | shsel2 28309 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
Theorem | shsvs 28310 | Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
Theorem | shsub1 28311 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 +ℋ 𝐵)) | ||
Theorem | shsub2 28312 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 +ℋ 𝐴)) | ||
Theorem | choc0 28313 | The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
⊢ (⊥‘0ℋ) = ℋ | ||
Theorem | choc1 28314 | The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (⊥‘ ℋ) = 0ℋ | ||
Theorem | chocnul 28315 | Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
⊢ (⊥‘∅) = ℋ | ||
Theorem | shintcli 28316 | Closure of intersection of a nonempty subset of Sℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Sℋ | ||
Theorem | shintcl 28317 | The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Sℋ ) | ||
Theorem | chintcli 28318 | The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Cℋ | ||
Theorem | chintcl 28319 | The intersection (infimum) of a nonempty subset of Cℋ belongs to Cℋ. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) | ||
Theorem | spanval 28320* | Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | ||
Theorem | hsupval 28321 | Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 28396. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | ||
Theorem | chsupval 28322 | The value of the supremum of a set of closed subspaces of Hilbert space. For an alternate version of the value, see chsupval2 28397. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | ||
Theorem | spancl 28323 | The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ∈ Sℋ ) | ||
Theorem | elspancl 28324 | A member of a span is a vector. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ∈ (span‘𝐴)) → 𝐵 ∈ ℋ) | ||
Theorem | shsupcl 28325 | Closure of the subspace supremum of set of subsets of Hilbert space. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 ℋ → (span‘∪ 𝐴) ∈ Sℋ ) | ||
Theorem | hsupcl 28326 | Closure of supremum of set of subsets of Hilbert space. Note that the supremum belongs to Cℋ even if the subsets do not. (Contributed by NM, 10-Nov-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) ∈ Cℋ ) | ||
Theorem | chsupcl 28327 | Closure of supremum of subset of Cℋ. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. Shows that Cℋ is a complete lattice. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 10-Nov-1999.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) ∈ Cℋ ) | ||
Theorem | hsupss 28328 | Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) | ||
Theorem | chsupss 28329 | Subset relation for supremum of subset of Cℋ. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ Cℋ ∧ 𝐵 ⊆ Cℋ ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) | ||
Theorem | hsupunss 28330 | The union of a set of Hilbert space subsets is smaller than its supremum. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 ℋ → ∪ 𝐴 ⊆ ( ∨ℋ ‘𝐴)) | ||
Theorem | chsupunss 28331 | The union of a set of closed subspaces is smaller than its supremum. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Cℋ → ∪ 𝐴 ⊆ ( ∨ℋ ‘𝐴)) | ||
Theorem | spanss2 28332 | A subset of Hilbert space is included in its span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴)) | ||
Theorem | shsupunss 28333 | The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Sℋ → ∪ 𝐴 ⊆ (span‘∪ 𝐴)) | ||
Theorem | spanid 28334 | A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | ||
Theorem | spanss 28335 | Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) | ||
Theorem | spanssoc 28336 | The span of a subset of Hilbert space is less than or equal to its closure (double orthogonal complement). (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ⊆ (⊥‘(⊥‘𝐴))) | ||
Theorem | sshjval 28337 | Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
Theorem | shjval 28338 | Value of join in Sℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
Theorem | chjval 28339 | Value of join in Cℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
Theorem | chjvali 28340 | Value of join in Cℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) | ||
Theorem | sshjval3 28341 | Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice Cℋ. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) | ||
Theorem | sshjcl 28342 | Closure of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
Theorem | shjcl 28343 | Closure of join in Sℋ. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
Theorem | chjcl 28344 | Closure of join in Cℋ. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
Theorem | shjcom 28345 | Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | ||
Theorem | shless 28346 | Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) | ||
Theorem | shlej1 28347 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) | ||
Theorem | shlej2 28348 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) | ||
Theorem | shincli 28349 | Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ | ||
Theorem | shscomi 28350 | Commutative law for subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴) | ||
Theorem | shsvai 28351 | Vector sum belongs to subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | shsel1i 28352 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | shsel2i 28353 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | shsvsi 28354 | Vector subtraction belongs to subspace sum. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | shunssi 28355 | Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) | ||
Theorem | shunssji 28356 | Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
Theorem | shsleji 28357 | Subspace sum is smaller than Hilbert lattice join. Remark in [Kalmbach] p. 65. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
Theorem | shjcomi 28358 | Commutative law for join in Sℋ. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) | ||
Theorem | shsub1i 28359 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) | ||
Theorem | shsub2i 28360 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐵 +ℋ 𝐴) | ||
Theorem | shub1i 28361 | Hilbert lattice join is an upper bound of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) | ||
Theorem | shjcli 28362 | Closure of Cℋ join. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ | ||
Theorem | shjshcli 28363 | Sℋ closure of join. (Contributed by NM, 5-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Sℋ | ||
Theorem | shlessi 28364 | Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) | ||
Theorem | shlej1i 28365 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) | ||
Theorem | shlej2i 28366 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) | ||
Theorem | shslej 28367 | Subspace sum is smaller than subspace join. Remark in [Kalmbach] p. 65. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) | ||
Theorem | shincl 28368 | Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) | ||
Theorem | shub1 28369 | Hilbert lattice join is an upper bound of two subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 ∨ℋ 𝐵)) | ||
Theorem | shub2 28370 | A subspace is a subset of its Hilbert lattice join with another. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 ∨ℋ 𝐴)) | ||
Theorem | shsidmi 28371 | Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐴) = 𝐴 | ||
Theorem | shslubi 28372 | The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) | ||
Theorem | shlesb1i 28373 | Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 +ℋ 𝐵) = 𝐵) | ||
Theorem | shsval2i 28374* | An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} | ||
Theorem | shsval3i 28375 | An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = (span‘(𝐴 ∪ 𝐵)) | ||
Theorem | shmodsi 28376 | The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 +ℋ 𝐵) ∩ 𝐶) ⊆ (𝐴 +ℋ (𝐵 ∩ 𝐶))) | ||
Theorem | shmodi 28377 | The modular law is implied by the closure of subspace sum. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ∧ 𝐴 ⊆ 𝐶) → ((𝐴 ∨ℋ 𝐵) ∩ 𝐶) ⊆ (𝐴 ∨ℋ (𝐵 ∩ 𝐶))) | ||
Theorem | pjhthlem1 28378* | Lemma for pjhth 28380. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ (𝜑 → 𝐴 ∈ ℋ) & ⊢ (𝜑 → 𝐵 ∈ 𝐻) & ⊢ (𝜑 → 𝐶 ∈ 𝐻) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝐵)) ≤ (normℎ‘(𝐴 −ℎ 𝑥))) & ⊢ 𝑇 = (((𝐴 −ℎ 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1)) ⇒ ⊢ (𝜑 → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = 0) | ||
Theorem | pjhthlem2 28379* | Lemma for pjhth 28380. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ (𝜑 → 𝐴 ∈ ℋ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
Theorem | pjhth 28380 | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | ||
Theorem | pjhtheu 28381* | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102. See pjhtheu2 28403 for the uniqueness of 𝑦. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
Definition | df-pjh 28382* | Define the projection function on a Hilbert space, as a mapping from the Hilbert lattice to a function on Hilbert space. Every closed subspace is associated with a unique projection function. Remark in [Kalmbach] p. 66, adopted as a definition. (projℎ‘𝐻)‘𝐴 is the projection of vector 𝐴 onto closed subspace 𝐻. Note that the range of projℎ is the set of all projection operators, so 𝑇 ∈ ran projℎ means that 𝑇 is a projection operator. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | ||
Theorem | pjhfval 28383* | The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) | ||
Theorem | pjhval 28384* | Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | ||
Theorem | pjpreeq 28385* | Equality with a projection. This version of pjeq 28386 does not assume the Axiom of Choice via pjhth 28380. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | ||
Theorem | pjeq 28386* | Equality with a projection. (Contributed by NM, 20-Jan-2007.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | ||
Theorem | axpjcl 28387 | Closure of a projection in its subspace. If we consider this together with axpjpj 28407 to be axioms, the need for the ax-hcompl 28187 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 28422.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) | ||
Theorem | pjhcl 28388 | Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) | ||
Theorem | omlsilem 28389 | Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Sℋ & ⊢ 𝐻 ∈ Sℋ & ⊢ 𝐺 ⊆ 𝐻 & ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ & ⊢ 𝐴 ∈ 𝐻 & ⊢ 𝐵 ∈ 𝐺 & ⊢ 𝐶 ∈ (⊥‘𝐺) ⇒ ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) | ||
Theorem | omlsii 28390 | Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | omlsi 28391 | Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) | ||
Theorem | ococi 28392 | Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 | ||
Theorem | ococ 28393 | Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) | ||
Theorem | dfch2 28394 | Alternate definition of the Hilbert lattice. (Contributed by NM, 8-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ Cℋ = {𝑥 ∈ 𝒫 ℋ ∣ (⊥‘(⊥‘𝑥)) = 𝑥} | ||
Theorem | ococin 28395* | The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) = ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) | ||
Theorem | hsupval2 28396* | Alternate definition of supremum of a subset of the Hilbert lattice. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. We actually define it on any collection of Hilbert space subsets, not just the Hilbert lattice Cℋ, to allow more general theorems. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = ∩ {𝑥 ∈ Cℋ ∣ ∪ 𝐴 ⊆ 𝑥}) | ||
Theorem | chsupval2 28397* | The value of the supremum of a set of closed subspaces of Hilbert space. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) = ∩ {𝑥 ∈ Cℋ ∣ ∪ 𝐴 ⊆ 𝑥}) | ||
Theorem | sshjval2 28398* | Value of join in the set of closed subspaces of Hilbert space Cℋ. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ∩ {𝑥 ∈ Cℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) | ||
Theorem | chsupid 28399* | A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴) | ||
Theorem | chsupsn 28400 | Value of supremum of subset of Cℋ on a singleton. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝐴}) = 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |