HomeHome Metamath Proof Explorer
Theorem List (p. 298 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 29701-29800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremballotlemimin 29701* (𝐼𝐶) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
 
Theoremballotlemic 29702* If the first vote is for B, the vote on the first tie is for A. (Contributed by Thierry Arnoux, 1-Dec-2016.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ 𝐶)
 
Theoremballotlem1c 29703* If the first vote is for A, the vote on the first tie is for B. (Contributed by Thierry Arnoux, 4-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) ∈ 𝐶)
 
Theoremballotlemsval 29704* Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
 
Theoremballotlemsv 29705* Value of 𝑆 evaluated at 𝐽 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
 
Theoremballotlemsgt1 29706* 𝑆 maps values less than (𝐼𝐶) to values greater than 1. (Contributed by Thierry Arnoux, 28-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 < ((𝑆𝐶)‘𝐽))
 
Theoremballotlemsdom 29707* Domain of 𝑆 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
 
Theoremballotlemsel1i 29708* The range (1...(𝐼𝐶)) is invariant under (𝑆𝐶). (Contributed by Thierry Arnoux, 28-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
 
Theoremballotlemsf1o 29709* The defined 𝑆 is a bijection, and an involution. (Contributed by Thierry Arnoux, 14-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
 
Theoremballotlemsi 29710* The image by 𝑆 of the first tie pick is the first pick. (Contributed by Thierry Arnoux, 14-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶)‘(𝐼𝐶)) = 1)
 
Theoremballotlemsima 29711* The image by 𝑆 of an interval before the first pick. (Contributed by Thierry Arnoux, 5-May-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) = (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))
 
Theoremballotlemieq 29712* If two countings share the same first tie, they also have the same swap function. (Contributed by Thierry Arnoux, 18-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 ∈ (𝑂𝐸) ∧ (𝐼𝐶) = (𝐼𝐷)) → (𝑆𝐶) = (𝑆𝐷))
 
Theoremballotlemrval 29713* Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
 
Theoremballotlemscr 29714* The image of (𝑅𝐶) by (𝑆𝐶). (Contributed by Thierry Arnoux, 21-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ (𝑅𝐶)) = 𝐶)
 
Theoremballotlemrv 29715* Value of 𝑅 evaluated at 𝐽. (Contributed by Thierry Arnoux, 17-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝐽 ∈ (𝑅𝐶) ↔ if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) ∈ 𝐶))
 
Theoremballotlemrv1 29716* Value of 𝑅 before the tie. (Contributed by Thierry Arnoux, 11-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐽 ∈ (𝑅𝐶) ↔ (((𝐼𝐶) + 1) − 𝐽) ∈ 𝐶))
 
Theoremballotlemrv2 29717* Value of 𝑅 after the tie. (Contributed by Thierry Arnoux, 11-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ (𝐼𝐶) < 𝐽) → (𝐽 ∈ (𝑅𝐶) ↔ 𝐽𝐶))
 
Theoremballotlemro 29718* Range of 𝑅 is included in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
 
Theoremballotlemgval 29719* Expand the value of . (Contributed by Thierry Arnoux, 21-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((#‘(𝑉𝑈)) − (#‘(𝑉𝑈))))
 
Theoremballotlemgun 29720* A property of the defined operator. (Contributed by Thierry Arnoux, 26-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))    &   (𝜑𝑈 ∈ Fin)    &   (𝜑𝑉 ∈ Fin)    &   (𝜑𝑊 ∈ Fin)    &   (𝜑 → (𝑉𝑊) = ∅)       (𝜑 → (𝑈 (𝑉𝑊)) = ((𝑈 𝑉) + (𝑈 𝑊)))
 
Theoremballotlemfg 29721* Express the value of (𝐹𝐶) in terms of . (Contributed by Thierry Arnoux, 21-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝐽) = (𝐶 (1...𝐽)))
 
Theoremballotlemfrc 29722* Express the value of (𝐹‘(𝑅𝐶)) in terms of the newly defined . (Contributed by Thierry Arnoux, 21-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
 
Theoremballotlemfrci 29723* Reverse counting preserves a tie at the first tie. (Contributed by Thierry Arnoux, 21-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0)
 
Theoremballotlemfrceq 29724* Value of 𝐹 for a reverse counting (𝑅𝐶). (Contributed by Thierry Arnoux, 27-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
 
Theoremballotlemfrcn0 29725* Value of 𝐹 for a reversed counting (𝑅𝐶), before the first tie, cannot be zero . (Contributed by Thierry Arnoux, 25-Apr-2017.) (Revised by AV, 6-Oct-2020.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0)
 
Theoremballotlemrc 29726* Range of 𝑅. (Contributed by Thierry Arnoux, 19-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ (𝑂𝐸))
 
Theoremballotlemirc 29727* Applying 𝑅 does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017.) (Revised by AV, 6-Oct-2020.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
 
Theoremballotlemrinv0 29728* Lemma for ballotlemrinv 29729. (Contributed by Thierry Arnoux, 18-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
 
Theoremballotlemrinv 29729* 𝑅 is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       𝑅 = 𝑅
 
Theoremballotlem1ri 29730* When the vote on the first tie is for A, the first vote is also for A on the reverse counting. (Contributed by Thierry Arnoux, 18-Apr-2017.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (1 ∈ (𝑅𝐶) ↔ (𝐼𝐶) ∈ 𝐶))
 
Theoremballotlem7 29731* 𝑅 is a bijection between two subsets of (𝑂𝐸): one where a vote for A is picked first, and one where a vote for B is picked first. (Contributed by Thierry Arnoux, 12-Dec-2016.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝑅 ↾ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
 
Theoremballotlem8 29732* There are as many countings with ties starting with a ballot for A as there are starting with a ballot for B. (Contributed by Thierry Arnoux, 7-Dec-2016.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) = (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
 
Theoremballotth 29733* Bertrand's ballot problem : the probability that A is ahead throughout the counting. This is Metamath 100 proof #30. (Contributed by Thierry Arnoux, 7-Dec-2016.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝑃𝐸) = ((𝑀𝑁) / (𝑀 + 𝑁))
 
TheoremballotlemiOLD 29734* Value of 𝐼 for a given counting 𝐶. (Contributed by Thierry Arnoux, 1-Dec-2016.) Obsolete version of ballotlemi 29696 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
 
TheoremballotlemiexOLD 29735* Properties of (𝐼𝐶). (Contributed by Thierry Arnoux, 12-Dec-2016.) Obsolete version of ballotlemiex 29697 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
 
Theoremballotlemi1OLD 29736* The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017.) Obsolete version of ballotlemi1 29698 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
 
TheoremballotlemiiOLD 29737* The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 4-Apr-2017.) Obsolete version of ballotlemii 29699 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
 
TheoremballotlemsupOLD 29738* The set of zeroes of 𝐹 satisfies the conditions to have a supremum. (Contributed by Thierry Arnoux, 1-Dec-2016.) Obsolete version of ballotlemsup 29700 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       (𝐶 ∈ (𝑂𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ (𝑤 < 𝑧 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑤 < 𝑦)))
 
TheoremballotlemiminOLD 29739* (𝐼𝐶) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) Obsolete version of ballotlemimin 29701 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
 
TheoremballotlemicOLD 29740* If the first vote is for B, the vote on the first tie is for A. (Contributed by Thierry Arnoux, 1-Dec-2016.) Obsolete version of ballotlemic 29702 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ 𝐶)
 
Theoremballotlem1cOLD 29741* If the first vote is for A, the vote on the first tie is for B. (Contributed by Thierry Arnoux, 4-Apr-2017.) Obsolete version of ballotlem1c 29703 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))       ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) ∈ 𝐶)
 
TheoremballotlemsvalOLD 29742* Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.) Obsolete version of ballotlemsval 29704 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
 
TheoremballotlemsvOLD 29743* Value of 𝑆 evaluated at 𝐽 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.) Obsolete version of ballotlemsv 29705 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
 
Theoremballotlemsgt1OLD 29744* 𝑆 maps values less than (𝐼𝐶) to values greater than 1. (Contributed by Thierry Arnoux, 28-Apr-2017.) Obsolete version of ballotlemsgt1 29706 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 < ((𝑆𝐶)‘𝐽))
 
TheoremballotlemsdomOLD 29745* Domain of 𝑆 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.) Obsolete version of ballotlemsdom 29707 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
 
Theoremballotlemsel1iOLD 29746* The range (1...(𝐼𝐶)) is invariant under (𝑆𝐶). (Contributed by Thierry Arnoux, 28-Apr-2017.) Obsolete version of ballotlemsel1i 29708 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
 
Theoremballotlemsf1oOLD 29747* The defined 𝑆 is a bijection, and an involution. (Contributed by Thierry Arnoux, 14-Apr-2017.) Obsolete version of ballotlemsf1o 29709 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
 
TheoremballotlemsiOLD 29748* The image by 𝑆 of the first tie pick is the first pick. (Contributed by Thierry Arnoux, 14-Apr-2017.) Obsolete version of ballotlemsi 29710 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶)‘(𝐼𝐶)) = 1)
 
TheoremballotlemsimaOLD 29749* The image by 𝑆 of an interval before the first pick. (Contributed by Thierry Arnoux, 5-May-2017.) Obsolete version of ballotlemsima 29711 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) = (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))
 
TheoremballotlemieqOLD 29750* If two countings share the same first tie, they also have the same swap function. (Contributed by Thierry Arnoux, 18-Apr-2017.) Obsolete version of ballotlemieq 29712 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 ∈ (𝑂𝐸) ∧ (𝐼𝐶) = (𝐼𝐷)) → (𝑆𝐶) = (𝑆𝐷))
 
TheoremballotlemrvalOLD 29751* Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.) Obsolete version of ballotlemrval 29713 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
 
TheoremballotlemscrOLD 29752* The image of (𝑅𝐶) by (𝑆𝐶). (Contributed by Thierry Arnoux, 21-Apr-2017.) Obsolete version of ballotlemscr 29714 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ (𝑅𝐶)) = 𝐶)
 
TheoremballotlemrvOLD 29753* Value of 𝑅 evaluated at 𝐽. (Contributed by Thierry Arnoux, 17-Apr-2017.) Obsolete version of ballotlemrv 29715 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝐽 ∈ (𝑅𝐶) ↔ if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) ∈ 𝐶))
 
Theoremballotlemrv1OLD 29754* Value of 𝑅 before the tie. (Contributed by Thierry Arnoux, 11-Apr-2017.) Obsolete version of ballotlemrv1 29716 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐽 ∈ (𝑅𝐶) ↔ (((𝐼𝐶) + 1) − 𝐽) ∈ 𝐶))
 
Theoremballotlemrv2OLD 29755* Value of 𝑅 after the tie. (Contributed by Thierry Arnoux, 11-Apr-2017.) Obsolete version of ballotlemrv2 29717 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ (𝐼𝐶) < 𝐽) → (𝐽 ∈ (𝑅𝐶) ↔ 𝐽𝐶))
 
TheoremballotlemroOLD 29756* Range of 𝑅 is included in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.) Obsolete version of ballotlemro 29718 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
 
TheoremballotlemgvalOLD 29757* Expand the value of . (Contributed by Thierry Arnoux, 21-Apr-2017.) Obsolete version of ballotlemgval 29719 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((#‘(𝑉𝑈)) − (#‘(𝑉𝑈))))
 
TheoremballotlemgunOLD 29758* A property of the defined operator. (Contributed by Thierry Arnoux, 26-Apr-2017.) Obsolete version of ballotlemgun 29720 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))    &   (𝜑𝑈 ∈ Fin)    &   (𝜑𝑉 ∈ Fin)    &   (𝜑𝑊 ∈ Fin)    &   (𝜑 → (𝑉𝑊) = ∅)       (𝜑 → (𝑈 (𝑉𝑊)) = ((𝑈 𝑉) + (𝑈 𝑊)))
 
TheoremballotlemfgOLD 29759* Express the value of (𝐹𝐶) in terms of . (Contributed by Thierry Arnoux, 21-Apr-2017.) Obsolete version of ballotlemfg 29721 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝐽) = (𝐶 (1...𝐽)))
 
TheoremballotlemfrcOLD 29760* Express the value of (𝐹‘(𝑅𝐶)) in terms of the newly defined . (Contributed by Thierry Arnoux, 21-Apr-2017.) Obsolete version of ballotlemfrc 29722 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
 
TheoremballotlemfrciOLD 29761* Reverse counting preserves a tie at the first tie. (Contributed by Thierry Arnoux, 21-Apr-2017.) Obsolete version of ballotlemfrci 29723 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0)
 
TheoremballotlemfrceqOLD 29762* Value of 𝐹 for a reverse counting (𝑅𝐶). (Contributed by Thierry Arnoux, 27-Apr-2017.) Obsolete version of ballotlemfrceq 29724 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))    &    = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
 
Theoremballotlemfrcn0OLD 29763* Value of 𝐹 for a reversed counting (𝑅𝐶), before the first tie, cannot be zero . (Contributed by Thierry Arnoux, 25-Apr-2017.) Obsolete version of ballotlemfrcn0 29725 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0)
 
TheoremballotlemrcOLD 29764* Range of 𝑅. (Contributed by Thierry Arnoux, 19-Apr-2017.) Obsolete version of ballotlemrc 29726 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ (𝑂𝐸))
 
TheoremballotlemircOLD 29765* Applying 𝑅 does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017.) Obsolete version of ballotlemirc 29727 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
 
Theoremballotlemrinv0OLD 29766* Lemma for ballotlemrinv 29729. (Contributed by Thierry Arnoux, 18-Apr-2017.) Obsolete version of ballotlemrinv0 29728 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
 
TheoremballotlemrinvOLD 29767* 𝑅 is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017.) Obsolete version of ballotlemrinv 29729 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       𝑅 = 𝑅
 
Theoremballotlem1riOLD 29768* When the vote on the first tie is for A, the first vote is also for A on the reverse counting. (Contributed by Thierry Arnoux, 18-Apr-2017.) Obsolete version of ballotlem1ri 29730 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝐶 ∈ (𝑂𝐸) → (1 ∈ (𝑅𝐶) ↔ (𝐼𝐶) ∈ 𝐶))
 
Theoremballotlem7OLD 29769* 𝑅 is a bijection between two subsets of (𝑂𝐸): one where a vote for A is picked first, and one where a vote for B is picked first. (Contributed by Thierry Arnoux, 12-Dec-2016.) Obsolete version of ballotlem7 29731 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝑅 ↾ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
 
Theoremballotlem8OLD 29770* There are as many countings with ties starting with a ballot for A as there are starting with a ballot for B. (Contributed by Thierry Arnoux, 7-Dec-2016.) Obsolete version of ballotlem8 29732 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) = (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
 
TheoremballotthOLD 29771* Bertrand's ballot problem : the probability that A is ahead throughout the counting. This is Metamath 100 proof #30. (Contributed by Thierry Arnoux, 7-Dec-2016.) Obsolete version of ballotth 29733 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}    &   𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))    &   𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))    &   𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}    &   𝑁 < 𝑀    &   𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ sup({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))    &   𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))    &   𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))       (𝑃𝐸) = ((𝑀𝑁) / (𝑀 + 𝑁))
 
20.3.21  Signum (sgn or sign) function - misc. additions
 
Theoremsgncl 29772 Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
(𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})
 
Theoremsgnclre 29773 Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
(𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)
 
Theoremsgnneg 29774 Negation of the signum. (Contributed by Thierry Arnoux, 1-Oct-2018.)
(𝐴 ∈ ℝ → (sgn‘-𝐴) = -(sgn‘𝐴))
 
Theoremsgn3da 29775 A conditional containing a signum is true if it is true in all three possible cases. (Contributed by Thierry Arnoux, 1-Oct-2018.)
(𝜑𝐴 ∈ ℝ*)    &   ((sgn‘𝐴) = 0 → (𝜓𝜒))    &   ((sgn‘𝐴) = 1 → (𝜓𝜃))    &   ((sgn‘𝐴) = -1 → (𝜓𝜏))    &   ((𝜑𝐴 = 0) → 𝜒)    &   ((𝜑 ∧ 0 < 𝐴) → 𝜃)    &   ((𝜑𝐴 < 0) → 𝜏)       (𝜑𝜓)
 
Theoremsgnmul 29776 Signum of a product. (Contributed by Thierry Arnoux, 2-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
 
Theoremsgnmulrp2 29777 Multiplication by a positive number does not affect signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (sgn‘(𝐴 · 𝐵)) = (sgn‘𝐴))
 
Theoremsgnsub 29778 Subtraction of a number of opposite sign. (Contributed by Thierry Arnoux, 2-Oct-2018.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → (sgn‘(𝐴𝐵)) = (sgn‘𝐴))
 
Theoremsgnnbi 29779 Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
(𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))
 
Theoremsgnpbi 29780 Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
(𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴))
 
Theoremsgn0bi 29781 Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.)
(𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0))
 
Theoremsgnsgn 29782 Signum is idempotent. (Contributed by Thierry Arnoux, 2-Oct-2018.)
(𝐴 ∈ ℝ* → (sgn‘(sgn‘𝐴)) = (sgn‘𝐴))
 
Theoremsgnmulsgn 29783 If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
 
Theoremsgnmulsgp 29784 If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
 
Theoremfzssfzo 29785 Condition for an integer interval to be a subset of an half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018.)
(𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁))
 
Theoremgsumncl 29786* Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
𝐾 = (Base‘𝑀)    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝑃 ∈ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)       (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾)
 
Theoremgsumnunsn 29787* Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
𝐾 = (Base‘𝑀)    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝑃 ∈ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)    &    + = (+g𝑀)    &   (𝜑𝐶𝐾)    &   ((𝜑𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)       (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶))
 
20.3.22  Words over a set - misc additions
 
Theoremwrdres 29788 Condition for the restriction of a word to be a word itself. (Contributed by Thierry Arnoux, 5-Oct-2018.)
((𝑊 ∈ Word 𝑆𝑁 ∈ (0...(#‘𝑊))) → (𝑊 ↾ (0..^𝑁)) ∈ Word 𝑆)
 
Theoremwrdsplex 29789* Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018.)
((𝑊 ∈ Word 𝑆𝑁 ∈ (0...(#‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣))
 
20.3.22.1  Operations on words
 
Theoremccatmulgnn0dir 29790 Concatenation of words follow the rule mulgnn0dir 17286 (although applying mulgnn0dir 17286 would require 𝑆 to be a set). In this case 𝐴 is ⟨“𝐾”⟩ to the power 𝑀 in the free monoid. (Contributed by Thierry Arnoux, 5-Oct-2018.)
𝐴 = ((0..^𝑀) × {𝐾})    &   𝐵 = ((0..^𝑁) × {𝐾})    &   𝐶 = ((0..^(𝑀 + 𝑁)) × {𝐾})    &   (𝜑𝐾𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐴 ++ 𝐵) = 𝐶)
 
Theoremofcccat 29791 Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 5-Oct-2018.)
(𝜑𝐹 ∈ Word 𝑆)    &   (𝜑𝐺 ∈ Word 𝑆)    &   (𝜑𝐾𝑇)       (𝜑 → ((𝐹 ++ 𝐺)∘𝑓/𝑐𝑅𝐾) = ((𝐹𝑓/𝑐𝑅𝐾) ++ (𝐺𝑓/𝑐𝑅𝐾)))
 
Theoremofcs1 29792 Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩∘𝑓/𝑐𝑅𝐵) = ⟨“(𝐴𝑅𝐵)”⟩)
 
Theoremofcs2 29793 Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 9-Oct-2018.)
((𝐴𝑆𝐵𝑆𝐶𝑇) → (⟨“𝐴𝐵”⟩∘𝑓/𝑐𝑅𝐶) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐶)”⟩)
 
20.3.23  Polynomials with real coefficients - misc additions
 
Theoremplymul02 29794 Product of a polynomial with the zero polynomial. (Contributed by Thierry Arnoux, 26-Sep-2018.)
(𝐹 ∈ (Poly‘𝑆) → (0𝑝𝑓 · 𝐹) = 0𝑝)
 
Theoremplymulx0 29795* Coefficients of a polynomial multiplyed by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
(𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹𝑓 · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
 
Theoremplymulx 29796* Coefficients of a polynomial multiplyed by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
(𝐹 ∈ (Poly‘ℝ) → (coeff‘(𝐹𝑓 · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
 
Theoremplyrecld 29797 Closure of a polynomial with real coefficients. (Contributed by Thierry Arnoux, 18-Sep-2018.)
(𝜑𝐹 ∈ (Poly‘ℝ))    &   (𝜑𝑋 ∈ ℝ)       (𝜑 → (𝐹𝑋) ∈ ℝ)
 
Theoremsignsplypnf 29798* The quotient of a polynomial 𝐹 by a monic monomial of same degree 𝐺 converges to the highest coefficient of 𝐹. (Contributed by Thierry Arnoux, 18-Sep-2018.)
𝐷 = (deg‘𝐹)    &   𝐶 = (coeff‘𝐹)    &   𝐵 = (𝐶𝐷)    &   𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))       (𝐹 ∈ (Poly‘ℝ) → (𝐹𝑓 / 𝐺) ⇝𝑟 𝐵)
 
Theoremsignsply0 29799* Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient 𝐴 and 𝐵 are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018.)
𝐷 = (deg‘𝐹)    &   𝐶 = (coeff‘𝐹)    &   𝐵 = (𝐶𝐷)    &   𝐴 = (𝐶‘0)    &   (𝜑𝐹 ∈ (Poly‘ℝ))    &   (𝜑𝐹 ≠ 0𝑝)    &   (𝜑 → (𝐴 · 𝐵) < 0)       (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
 
20.3.24  Descartes's rule of signs
 
20.3.24.1  Sign changes in a word over real numbers
 
Theoremsignspval 29800* The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
= (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))       ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >