 Home Metamath Proof ExplorerTheorem List (p. 305 of 424) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27759) Hilbert Space Explorer (27760-29284) Users' Mathboxes (29285-42322)

Theorem List for Metamath Proof Explorer - 30401-30500   *Has distinct variable group(s)
TypeLabelDescription
Statement

20.3.18  Euler's partition theorem

Theoremoddpwdc 30401* Lemma for eulerpart 30429. The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ

Theoremoddpwdcv 30402* Lemma for eulerpart 30429: value of the 𝐹 function. (Contributed by Thierry Arnoux, 9-Sep-2017.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = ((2↑(2nd𝑊)) · (1st𝑊)))

Theoremeulerpartlemsv1 30403* Lemma for eulerpart 30429. Value of the sum of a partition 𝐴. (Contributed by Thierry Arnoux, 26-Aug-2018.)
𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))

Theoremeulerpartlemelr 30404* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 8-Aug-2018.)
𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))

Theoremeulerpartlemsv2 30405* Lemma for eulerpart 30429. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.)
𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))

Theoremeulerpartlemsf 30406* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 8-Aug-2018.)
𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       𝑆:((ℕ0𝑚 ℕ) ∩ 𝑅)⟶ℕ0

Theoremeulerpartlems 30407* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 6-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)

Theoremeulerpartlemsv3 30408* Lemma for eulerpart 30429. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.)
𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))

Theoremeulerpartlemgc 30409* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 9-Aug-2018.)
𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))

Theoremeulerpartleme 30410* Lemma for eulerpart 30429. (Contributed by Mario Carneiro, 26-Jan-2015.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}       (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))

Theoremeulerpartlemv 30411* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 19-Aug-2018.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}       (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))

Theoremeulerpartlemo 30412* Lemma for eulerpart 30429: 𝑂 is the set of odd partitions of 𝑁. (Contributed by Thierry Arnoux, 10-Aug-2017.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}       (𝐴𝑂 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))

Theoremeulerpartlemd 30413* Lemma for eulerpart 30429: 𝐷 is the set of distinct part. of 𝑁. (Contributed by Thierry Arnoux, 11-Aug-2017.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}       (𝐴𝐷 ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))

Theoremeulerpartlem1 30414* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})       𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)

Theoremeulerpartlemb 30415* Lemma for eulerpart 30429. The set of all partitions of 𝑁 is finite. (Contributed by Mario Carneiro, 26-Jan-2015.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})       𝑃 ∈ Fin

Theoremeulerpartlemt0 30416* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 19-Sep-2017.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}       (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))

Theoremeulerpartlemf 30417* Lemma for eulerpart 30429: Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}       ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)

Theoremeulerpartlemt 30418* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 19-Sep-2017.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}       ((ℕ0𝑚 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))

Theoremeulerpartgbij 30419* Lemma for eulerpart 30429: The 𝐺 function is a bijection. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))       𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑𝑚 ℕ) ∩ 𝑅)

Theoremeulerpartlemgv 30420* Lemma for eulerpart 30429: value of the function 𝐺. (Contributed by Thierry Arnoux, 13-Nov-2017.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))       (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))

Theoremeulerpartlemr 30421* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 13-Nov-2017.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))       𝑂 = ((𝑇𝑅) ∩ 𝑃)

Theoremeulerpartlemmf 30422* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))       (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)

Theoremeulerpartlemgvv 30423* Lemma for eulerpart 30429: value of the function 𝐺 evaluated. (Contributed by Thierry Arnoux, 10-Aug-2018.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))       ((𝐴 ∈ (𝑇𝑅) ∧ 𝐵 ∈ ℕ) → ((𝐺𝐴)‘𝐵) = if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝐵, 1, 0))

Theoremeulerpartlemgu 30424* Lemma for eulerpart 30429: Rewriting the 𝑈 set for an odd partition Note that interestingly, this proof reuses marypha2lem2 8339. (Contributed by Thierry Arnoux, 10-Aug-2018.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))    &   𝑈 = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))       (𝐴 ∈ (𝑇𝑅) → 𝑈 = {⟨𝑡, 𝑛⟩ ∣ (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)‘𝑡))})

Theoremeulerpartlemgh 30425* Lemma for eulerpart 30429: The 𝐹 function is a bijection on the 𝑈 subsets. (Contributed by Thierry Arnoux, 15-Aug-2018.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))    &   𝑈 = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))       (𝐴 ∈ (𝑇𝑅) → (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚})

Theoremeulerpartlemgf 30426* Lemma for eulerpart 30429: Images under 𝐺 have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))       (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)

Theoremeulerpartlemgs2 30427* Lemma for eulerpart 30429: The 𝐺 function also preserves partition sums. (Contributed by Thierry Arnoux, 10-Sep-2017.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       (𝐴 ∈ (𝑇𝑅) → (𝑆‘(𝐺𝐴)) = (𝑆𝐴))

Theoremeulerpartlemn 30428* Lemma for eulerpart 30429. (Contributed by Thierry Arnoux, 30-Aug-2018.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}    &   𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))    &   𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}    &   𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})    &   𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}    &   𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))    &   𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))       (𝐺𝑂):𝑂1-1-onto𝐷

Theoremeulerpart 30429* Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let 𝑃 be the set of all partitions of 𝑁, represented as multisets of positive integers, which is to say functions from to 0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals 𝑁. Then the set 𝑂 of all partitions that only consist of odd numbers and the set 𝐷 of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}    &   𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}    &   𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}       (#‘𝑂) = (#‘𝐷)

20.3.19  Sequences defined by strong recursion

Syntaxcsseq 30430 Sequences defined by strong recursion.
class seqstr

Definitiondf-sseq 30431* Define a builder for sequences by strong recursion, i.e. by computing the value of the n-th element of the sequence from all preceding elements and not just the previous one. (Contributed by Thierry Arnoux, 21-Apr-2019.)
seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ ( lastS ∘ seq(#‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))))

Theoremsubiwrd 30432 Lemma for sseqp1 30442. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝐹:ℕ0𝑆)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ Word 𝑆)

Theoremsubiwrdlen 30433 Length of a subword of an infinite word. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝐹:ℕ0𝑆)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁)

Theoremiwrdsplit 30434 Lemma for sseqp1 30442. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝐹:ℕ0𝑆)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐹 ↾ (0..^(𝑁 + 1))) = ((𝐹 ↾ (0..^𝑁)) ++ ⟨“(𝐹𝑁)”⟩))

Theoremsseqval 30435* Value of the strong sequence builder function. The set 𝑊 represents here the words of length greater than or equal to the lenght of the initial sequence 𝑀. (Contributed by Thierry Arnoux, 21-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝑀 ∈ Word 𝑆)    &   𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))    &   (𝜑𝐹:𝑊𝑆)       (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))

Theoremsseqfv1 30436 Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝑀 ∈ Word 𝑆)    &   𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))    &   (𝜑𝐹:𝑊𝑆)    &   (𝜑𝑁 ∈ (0..^(#‘𝑀)))       (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀𝑁))

Theoremsseqfn 30437 A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝑀 ∈ Word 𝑆)    &   𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))    &   (𝜑𝐹:𝑊𝑆)       (𝜑 → (𝑀seqstr𝐹) Fn ℕ0)

Theoremsseqmw 30438 Lemma for sseqf 30439 amd sseqp1 30442. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝑀 ∈ Word 𝑆)    &   𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))    &   (𝜑𝐹:𝑊𝑆)       (𝜑𝑀𝑊)

Theoremsseqf 30439 A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝑀 ∈ Word 𝑆)    &   𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))    &   (𝜑𝐹:𝑊𝑆)       (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)

Theoremsseqfres 30440 The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝑀 ∈ Word 𝑆)    &   𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))    &   (𝜑𝐹:𝑊𝑆)       (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(#‘𝑀))) = 𝑀)

Theoremsseqfv2 30441* Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝑀 ∈ Word 𝑆)    &   𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))    &   (𝜑𝐹:𝑊𝑆)    &   (𝜑𝑁 ∈ (ℤ‘(#‘𝑀)))       (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = ( lastS ‘(seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁)))

Theoremsseqp1 30442 Value of the strong sequence builder function at a successor. (Contributed by Thierry Arnoux, 24-Apr-2019.)
(𝜑𝑆 ∈ V)    &   (𝜑𝑀 ∈ Word 𝑆)    &   𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))    &   (𝜑𝐹:𝑊𝑆)    &   (𝜑𝑁 ∈ (ℤ‘(#‘𝑀)))       (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁))))

20.3.20  Fibonacci Numbers

Syntaxcfib 30443 The Fibonacci sequence.
class Fibci

Definitiondf-fib 30444 Define the Fibonacci sequence, where that each element is the sum of the two preceding ones, starting from 0 and 1. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))

Theoremfiblem 30445 Lemma for fib0 30446, fib1 30447 and fibp1 30448. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))):(Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩))))⟶ℕ0

Theoremfib0 30446 Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(Fibci‘0) = 0

Theoremfib1 30447 Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(Fibci‘1) = 1

Theoremfibp1 30448 Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))

Theoremfib2 30449 Value of the Fibonacci sequence at index 2. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(Fibci‘2) = 1

Theoremfib3 30450 Value of the Fibonacci sequence at index 3. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(Fibci‘3) = 2

Theoremfib4 30451 Value of the Fibonacci sequence at index 4. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(Fibci‘4) = 3

Theoremfib5 30452 Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(Fibci‘5) = 5

Theoremfib6 30453 Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019.)
(Fibci‘6) = 8

20.3.21  Probability

20.3.21.1  Probability Theory

Syntaxcprb 30454 Extend class notation to include the class of probability measures.
class Prob

Definitiondf-prob 30455 Define the class of probability measures as the set of measures with total measure 1. (Contributed by Thierry Arnoux, 14-Sep-2016.)
Prob = {𝑝 ran measures ∣ (𝑝 dom 𝑝) = 1}

Theoremelprob 30456 The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.)
(𝑃 ∈ Prob ↔ (𝑃 ran measures ∧ (𝑃 dom 𝑃) = 1))

Theoremdomprobmeas 30457 A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.)
(𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))

Theoremdomprobsiga 30458 The domain of a probability measure is a sigma-algebra. (Contributed by Thierry Arnoux, 23-Dec-2016.)
(𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)

Theoremprobtot 30459 The probability of the universe set is 1. Second axiom of Kolmogorov. (Contributed by Thierry Arnoux, 8-Dec-2016.)
(𝑃 ∈ Prob → (𝑃 dom 𝑃) = 1)

Theoremprob01 30460 A probability is an element of [ 0 , 1 ]. First axiom of Kolmogorov. (Contributed by Thierry Arnoux, 25-Dec-2016.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃𝐴) ∈ (0[,]1))

Theoremprobnul 30461 The probability of the empty event set is 0. (Contributed by Thierry Arnoux, 25-Dec-2016.)
(𝑃 ∈ Prob → (𝑃‘∅) = 0)

Theoremunveldomd 30462 The universe is an element of the domain of the probability, the universe (entire probability space) being dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.)
(𝜑𝑃 ∈ Prob)       (𝜑 dom 𝑃 ∈ dom 𝑃)

Theoremunveldom 30463 The universe is an element of the domain of the probability, the universe (entire probability space) being dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.)
(𝑃 ∈ Prob → dom 𝑃 ∈ dom 𝑃)

Theoremnuleldmp 30464 The empty set is an element of the domain of the probability. (Contributed by Thierry Arnoux, 22-Jan-2017.)
(𝑃 ∈ Prob → ∅ ∈ dom 𝑃)

Theoremprobcun 30465* The probability of the union of a countable disjoint set of events is the sum of their probabilities. (Third axiom of Kolmogorov) Here, the Σ construct cannot be used as it can handle infinite indexing set only if they are subsets of , which is not the case here. (Contributed by Thierry Arnoux, 25-Dec-2016.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ 𝒫 dom 𝑃 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → (𝑃 𝐴) = Σ*𝑥𝐴(𝑃𝑥))

Theoremprobun 30466 The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))

Theoremprobdif 30467 The probability of the difference of two event sets. (Contributed by Thierry Arnoux, 12-Dec-2016.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) − (𝑃‘(𝐴𝐵))))

Theoremprobinc 30468 A probability law is increasing with regard to event set inclusion. (Contributed by Thierry Arnoux, 10-Feb-2017.)
(((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ≤ (𝑃𝐵))

Theoremprobdsb 30469 The probability of the complement of a set. That is, the probability that the event 𝐴 does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘( dom 𝑃𝐴)) = (1 − (𝑃𝐴)))

Theoremprobmeasd 30470 A probability measure is a measure. (Contributed by Thierry Arnoux, 2-Feb-2017.)
(𝜑𝑃 ∈ Prob)       (𝜑𝑃 ran measures)

Theoremprobvalrnd 30471 The value of a probability is a real number. (Contributed by Thierry Arnoux, 2-Feb-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝐴 ∈ dom 𝑃)       (𝜑 → (𝑃𝐴) ∈ ℝ)

Theoremprobtotrnd 30472 The probability of the universe set is finite. (Contributed by Thierry Arnoux, 2-Feb-2017.)
(𝜑𝑃 ∈ Prob)       (𝜑 → (𝑃 dom 𝑃) ∈ ℝ)

Theoremtotprobd 30473* Law of total probability, deduction form. (Contributed by Thierry Arnoux, 25-Dec-2016.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝐴 ∈ dom 𝑃)    &   (𝜑𝐵 ∈ 𝒫 dom 𝑃)    &   (𝜑 𝐵 = dom 𝑃)    &   (𝜑𝐵 ≼ ω)    &   (𝜑Disj 𝑏𝐵 𝑏)       (𝜑 → (𝑃𝐴) = Σ*𝑏𝐵(𝑃‘(𝑏𝐴)))

Theoremtotprob 30474* Law of total probability. (Contributed by Thierry Arnoux, 25-Dec-2016.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝐵 = dom 𝑃𝐵 ∈ 𝒫 dom 𝑃 ∧ (𝐵 ≼ ω ∧ Disj 𝑏𝐵 𝑏))) → (𝑃𝐴) = Σ*𝑏𝐵(𝑃‘(𝑏𝐴)))

TheoremprobfinmeasbOLD 30475* Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 17-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ Prob)

Theoremprobfinmeasb 30476 Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017.)
((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀𝑓/𝑐 /𝑒 (𝑀 𝑆)) ∈ Prob)

Theoremprobmeasb 30477* Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016.)
((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob)

20.3.21.2  Conditional Probabilities

Syntaxccprob 30478 Extends class notation with the conditional probability builder.
class cprob

Definitiondf-cndprob 30479* Define the conditional probability. (Contributed by Thierry Arnoux, 14-Sep-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))))

Theoremcndprobval 30480 The value of the conditional probability , i.e. the probability for the event 𝐴, given 𝐵, under the probability law 𝑃. (Contributed by Thierry Arnoux, 21-Jan-2017.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((𝑃‘(𝐴𝐵)) / (𝑃𝐵)))

Theoremcndprobin 30481 An identity linking conditional probability and intersection. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
(((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑃𝐵) ≠ 0) → (((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) · (𝑃𝐵)) = (𝑃‘(𝐴𝐵)))

Theoremcndprob01 30482 The conditional probability has values in [0, 1]. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
(((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑃𝐵) ≠ 0) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) ∈ (0[,]1))

Theoremcndprobtot 30483 The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((cprob‘𝑃)‘⟨ dom 𝑃, 𝐴⟩) = 1)

Theoremcndprobnul 30484 The conditional probability given empty event is zero. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((cprob‘𝑃)‘⟨∅, 𝐴⟩) = 0)

Theoremcndprobprob 30485* The conditional probability defines a probability law. (Contributed by Thierry Arnoux, 23-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘⟨𝑎, 𝐵⟩)) ∈ Prob)

Theorembayesth 30486 Bayes Theorem. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
(((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ (𝑃𝐴) ≠ 0 ∧ (𝑃𝐵) ≠ 0) → ((cprob‘𝑃)‘⟨𝐴, 𝐵⟩) = ((((cprob‘𝑃)‘⟨𝐵, 𝐴⟩) · (𝑃𝐴)) / (𝑃𝐵)))

20.3.21.3  Real Valued Random Variables

Syntaxcrrv 30487 Extend class notation with the class of real valued random variables.
class rRndVar

Definitiondf-rrv 30488 In its generic definition, a random variable is a measurable function from a probability space to a Borel set. Here, we specifically target real-valued random variables, i.e. measurable function from a probability space to the Borel sigma-algebra on the set of real numbers. (Contributed by Thierry Arnoux, 20-Sep-2016.) (Revised by Thierry Arnoux, 25-Jan-2017.)
rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅))

Theoremrrvmbfm 30489 A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑃 ∈ Prob)       (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))

Theoremisrrvv 30490* Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑃 ∈ Prob)       (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))

Theoremrrvvf 30491 A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))       (𝜑𝑋: dom 𝑃⟶ℝ)

Theoremrrvfn 30492 A real-valued random variable is a function over the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))       (𝜑𝑋 Fn dom 𝑃)

Theoremrrvdm 30493 The domain of a random variable is the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))       (𝜑 → dom 𝑋 = dom 𝑃)

Theoremrrvrnss 30494 The range of a random variable as a subset of . (Contributed by Thierry Arnoux, 6-Feb-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))       (𝜑 → ran 𝑋 ⊆ ℝ)

Theoremrrvf2 30495 A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))       (𝜑𝑋:dom 𝑋⟶ℝ)

Theoremrrvdmss 30496 The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))       (𝜑 dom 𝑃 ⊆ dom 𝑋)

Theoremrrvfinvima 30497* For a real-value random variable 𝑋, any open interval in is the image of a measurable set. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))       (𝜑 → ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)

Theorem0rrv 30498* The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.)
(𝜑𝑃 ∈ Prob)       (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))

Theoremrrvadd 30499 The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))    &   (𝜑𝑌 ∈ (rRndVar‘𝑃))       (𝜑 → (𝑋𝑓 + 𝑌) ∈ (rRndVar‘𝑃))

Theoremrrvmulc 30500 A random variable multiplied by a constant is a random variable. (Contributed by Thierry Arnoux, 17-Jan-2017.) (Revised by Thierry Arnoux, 22-May-2017.)
(𝜑𝑃 ∈ Prob)    &   (𝜑𝑋 ∈ (rRndVar‘𝑃))    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝑋𝑓/𝑐 · 𝐶) ∈ (rRndVar‘𝑃))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42322
 Copyright terms: Public domain < Previous  Next >