HomeHome Metamath Proof Explorer
Theorem List (p. 323 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27745)
  Hilbert Space Explorer  Hilbert Space Explorer
(27746-29270)
  Users' Mathboxes  Users' Mathboxes
(29271-42316)
 

Theorem List for Metamath Proof Explorer - 32201-32300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
20.8.32.7  Outside of relationship
 
Syntaxcoutsideof 32201 Declare the syntax for the outside of constant.
class OutsideOf
 
Definitiondf-outsideof 32202 The outside of relationship. This relationship expresses that 𝑃, 𝐴, and 𝐵 fall on a line, but 𝑃 is not on the segment 𝐴𝐵. This definition is taken from theorem 6.4 of [Schwabhauser] p. 43, since it requires no dummy variables. (Contributed by Scott Fenton, 17-Oct-2013.)
OutsideOf = ( Colinear ∖ Btwn )
 
Theorembroutsideof 32203 Binary relationship form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
 
Theorembroutsideof2 32204 Alternate form of OutsideOf. Definition 6.1 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
 
Theoremoutsidene1 32205 Outsideness implies inequality. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
 
Theoremoutsidene2 32206 Outsideness implies inequality. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐵𝑃))
 
Theorembtwnoutside 32207 A principle linking outsideness to betweenness. Theorem 6.2 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩)))
 
Theorembroutsideof3 32208* Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
 
Theoremoutsideofrflx 32209 Reflexitivity of outsideness. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐴𝑃𝑃OutsideOf⟨𝐴, 𝐴⟩))
 
Theoremoutsideofcom 32210 Commutitivity law for outsideness. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
 
Theoremoutsideoftr 32211 Transitivity law for outsideness. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) → 𝑃OutsideOf⟨𝐴, 𝐶⟩))
 
Theoremoutsideofeq 32212 Uniqueness law for OutsideOf. Analogue of segconeq 32092. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
 
Theoremoutsideofeu 32213* Given a non-degenerate ray, there is a unique point congruent to the segment 𝐵𝐶 lying on the ray 𝐴𝑅. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 23-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑅𝐴𝐵𝐶) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
 
Theoremoutsidele 32214 Relate OutsideOf to Seg. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))
 
Theoremoutsideofcol 32215 Outside of implies colinearity. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝑃OutsideOf⟨𝑄, 𝑅⟩ → 𝑃 Colinear ⟨𝑄, 𝑅⟩)
 
20.8.32.8  Lines and Rays
 
Syntaxcline2 32216 Declare the constant for the line function.
class Line
 
Syntaxcray 32217 Declare the constant for the ray function.
class Ray
 
Syntaxclines2 32218 Declare the constant for the set of all lines.
class LinesEE
 
Definitiondf-line2 32219* Define the Line function. This function generates the line passing through the distinct points 𝑎 and 𝑏. Adapted from definition 6.14 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 25-Oct-2013.)
Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
 
Definitiondf-ray 32220* Define the Ray function. This function generates the set of all points that lie on the ray starting at 𝑝 and passing through 𝑎. Definition 6.8 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 21-Oct-2013.)
Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
 
Definitiondf-lines2 32221 Define the set of all lines. Definition 6.14, part 2 of [Schwabhauser] p. 45. See ellines 32234 for membership. (Contributed by Scott Fenton, 28-Oct-2013.)
LinesEE = ran Line
 
Theoremfunray 32222 Show that the Ray relationship is a function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Fun Ray
 
Theoremfvray 32223* Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
 
Theoremfunline 32224 Show that the Line relationship is a function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Fun Line
 
Theoremlinedegen 32225 When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝐴Line𝐴) = ∅
 
Theoremfvline 32226* Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
 
Theoremliness 32227 A line is a subset of the space its two points lie in. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) ⊆ (𝔼‘𝑁))
 
Theoremfvline2 32228* Alternate definition of a line. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝐴, 𝐵⟩})
 
Theoremlineunray 32229 A line is composed of a point and the two rays emerging from it. Theorem 6.15 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 Btwn ⟨𝑄, 𝑅⟩ → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅))))
 
Theoremlineelsb2 32230 If 𝑆 lies on 𝑃𝑄, then 𝑃𝑄 = 𝑃𝑆. Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))
 
Theoremlinerflx1 32231 Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑃Line𝑄))
 
Theoremlinecom 32232 Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = (𝑄Line𝑃))
 
Theoremlinerflx2 32233 Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑃Line𝑄))
 
Theoremellines 32234* Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)))
 
Theoremlinethru 32235 If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))
 
Theoremhilbert1.1 32236* There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
 
Theoremhilbert1.2 32237* There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.)
(𝑃𝑄 → ∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
 
Theoremlinethrueu 32238* There is a unique line going through any two distinct points. Theorem 6.19 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃!𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
 
Theoremlineintmo 32239* Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → ∃*𝑥(𝑥𝐴𝑥𝐵))
 
20.8.33  Forward difference
 
Syntaxcfwddif 32240 Declare the syntax for the forward difference operator.
class
 
Definitiondf-fwddif 32241* Define the forward difference operator. This is a discrete analogue of the derivative operator. Definition 2.42 of [GramKnuthPat], p. 47. (Contributed by Scott Fenton, 18-May-2020.)
△ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))))
 
Syntaxcfwddifn 32242 Declare the syntax for the nth forward difference operator.
class n
 
Definitiondf-fwddifn 32243* Define the nth forward difference operator. This works out to be the forward difference operator iterated 𝑛 times. (Contributed by Scott Fenton, 28-May-2020.)
n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))))
 
Theoremfwddifval 32244 Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝑋𝐴)    &   (𝜑 → (𝑋 + 1) ∈ 𝐴)       (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
 
Theoremfwddifnval 32245* The value of the forward difference operator at a point. (Contributed by Scott Fenton, 28-May-2020.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝑋 ∈ ℂ)    &   ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)       (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
 
Theoremfwddifn0 32246 The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝑋𝐴)       (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))
 
Theoremfwddifnp1 32247* The value of the n-iterated forward difference at a successor. (Contributed by Scott Fenton, 28-May-2020.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝑋 ∈ ℂ)    &   ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑋 + 𝑘) ∈ 𝐴)       (𝜑 → (((𝑁 + 1) △n 𝐹)‘𝑋) = (((𝑁n 𝐹)‘(𝑋 + 1)) − ((𝑁n 𝐹)‘𝑋)))
 
20.8.34  Rank theorems
 
Theoremrankung 32248 The rank of the union of two sets. Closed form of rankun 8704. (Contributed by Scott Fenton, 15-Jul-2015.)
((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
 
Theoremranksng 32249 The rank of a singleton. Closed form of ranksn 8702. (Contributed by Scott Fenton, 15-Jul-2015.)
(𝐴𝑉 → (rank‘{𝐴}) = suc (rank‘𝐴))
 
Theoremrankelg 32250 The membership relation is inherited by the rank function. Closed form of rankel 8687. (Contributed by Scott Fenton, 16-Jul-2015.)
((𝐵𝑉𝐴𝐵) → (rank‘𝐴) ∈ (rank‘𝐵))
 
Theoremrankpwg 32251 The rank of a power set. Closed form of rankpw 8691. (Contributed by Scott Fenton, 16-Jul-2015.)
(𝐴𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
 
Theoremrank0 32252 The rank of the empty set is . (Contributed by Scott Fenton, 17-Jul-2015.)
(rank‘∅) = ∅
 
Theoremrankeq1o 32253 The only set with rank 1𝑜 is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.)
((rank‘𝐴) = 1𝑜𝐴 = {∅})
 
20.8.35  Hereditarily Finite Sets
 
Syntaxchf 32254 The constant Hf is a class.
class Hf
 
Definitiondf-hf 32255 Define the hereditarily finite sets. These are the finite sets whose elements are finite, and so forth. (Contributed by Scott Fenton, 9-Jul-2015.)
Hf = (𝑅1 “ ω)
 
Theoremelhf 32256* Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015.)
(𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
 
Theoremelhf2 32257 Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
𝐴 ∈ V       (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)
 
Theoremelhf2g 32258 Hereditarily finiteness via rank. Closed form of elhf2 32257. (Contributed by Scott Fenton, 15-Jul-2015.)
(𝐴𝑉 → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
 
Theorem0hf 32259 The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015.)
∅ ∈ Hf
 
Theoremhfun 32260 The union of two HF sets is an HF set. (Contributed by Scott Fenton, 15-Jul-2015.)
((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴𝐵) ∈ Hf )
 
Theoremhfsn 32261 The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015.)
(𝐴 ∈ Hf → {𝐴} ∈ Hf )
 
Theoremhfadj 32262 Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015.)
((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 ∪ {𝐵}) ∈ Hf )
 
Theoremhfelhf 32263 Any member of an HF set is itself an HF set. (Contributed by Scott Fenton, 16-Jul-2015.)
((𝐴𝐵𝐵 ∈ Hf ) → 𝐴 ∈ Hf )
 
Theoremhftr 32264 The class of all hereditarily finite sets is transitive. (Contributed by Scott Fenton, 16-Jul-2015.)
Tr Hf
 
Theoremhfext 32265* Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.)
((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵)))
 
Theoremhfuni 32266 The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
(𝐴 ∈ Hf → 𝐴 ∈ Hf )
 
Theoremhfpw 32267 The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
(𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf )
 
Theoremhfninf 32268 ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
¬ ω ∈ Hf
 
20.9  Mathbox for Jeff Hankins
 
20.9.1  Miscellany
 
Theorema1i14 32269 Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.)
(𝜓 → (𝜒𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
 
Theorema1i24 32270 Add two antecedents to a wff. (Contributed by Jeff Hankins, 5-Aug-2009.)
(𝜑 → (𝜒𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
 
Theoremexp5d 32271 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(((𝜑𝜓) ∧ 𝜒) → ((𝜃𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp5g 32272 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑𝜓) → (((𝜒𝜃) ∧ 𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp5k 32273 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (((𝜓 ∧ (𝜒𝜃)) ∧ 𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp56 32274 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((((𝜑𝜓) ∧ 𝜒) ∧ (𝜃𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp58 32275 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(((𝜑𝜓) ∧ ((𝜒𝜃) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp510 32276 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ (((𝜓𝜒) ∧ 𝜃) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp511 32277 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ ((𝜓 ∧ (𝜒𝜃)) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp512 32278 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ ((𝜓𝜒) ∧ (𝜃𝜏))) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theorem3com12d 32279 Commutation in consequent. Swap 1st and 2nd. (Contributed by Jeff Hankins, 17-Nov-2009.)
(𝜑 → (𝜓𝜒𝜃))       (𝜑 → (𝜒𝜓𝜃))
 
Theoremimp5p 32280 A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (𝜑 → (𝜓 → ((𝜒𝜃𝜏) → 𝜂)))
 
Theoremimp5q 32281 A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       ((𝜑𝜓) → ((𝜒𝜃𝜏) → 𝜂))
 
Theoremecase13d 32282 Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → ¬ 𝜃)    &   (𝜑 → (𝜒𝜓𝜃))       (𝜑𝜓)
 
Theoremsubtr 32283 Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑌    &   𝑥𝑍    &   (𝑥 = 𝐴𝑋 = 𝑌)    &   (𝑥 = 𝐵𝑋 = 𝑍)       ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵𝑌 = 𝑍))
 
Theoremsubtr2 32284 Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝜓    &   𝑥𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → (𝜓𝜒)))
 
Theoremtrer 32285* A relation intersected with its converse is an equivalence relation if the relation is transitive. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
(∀𝑎𝑏𝑐((𝑎 𝑏𝑏 𝑐) → 𝑎 𝑐) → ( ) Er dom ( ))
 
Theoremelicc3 32286 An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
 
Theoremfinminlem 32287* A useful lemma about finite sets. If a property holds for a finite set, it holds for a minimal set. (Contributed by Jeff Hankins, 4-Dec-2009.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥 ∈ Fin 𝜑 → ∃𝑥(𝜑 ∧ ∀𝑦((𝑦𝑥𝜓) → 𝑥 = 𝑦)))
 
Theoremgtinf 32288* Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) (Revised by AV, 10-Oct-2021.)
(((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
 
TheoremgtinfOLD 32289* Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) Obsolete version of gtinf 32288 as of 10-Oct-2021. (New usage is discouraged.) (Proof modification is discouraged.)
(((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
 
Theoremopnrebl 32290* A set is open in the standard topology of the reals precisely when every point can be enclosed in an open ball. (Contributed by Jeff Hankins, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
(𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ ((𝑥𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴))
 
Theoremopnrebl2 32291* A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
(𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
 
Theoremnn0prpwlem 32292* Lemma for nn0prpw 32293. Use strong induction to show that every positive integer has unique prime power divisors. (Contributed by Jeff Hankins, 28-Sep-2013.)
(𝐴 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)))
 
Theoremnn0prpw 32293* Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
 
20.9.2  Basic topological facts
 
Theoremtopbnd 32294 Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
 
Theoremopnbnd 32295 A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
 
Theoremcldbnd 32296 A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
 
Theoremntruni 32297* A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
 
Theoremclsun 32298 A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
 
Theoremclsint2 32299* The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
 
Theoremopnregcld 32300* A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42316
  Copyright terms: Public domain < Previous  Next >