 Home Metamath Proof ExplorerTheorem List (p. 350 of 425) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-26948) Hilbert Space Explorer (26949-28473) Users' Mathboxes (28474-42428)

Theorem List for Metamath Proof Explorer - 34901-35000   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremcdlemg29 34901* Eliminate (𝐹𝑃) ≠ 𝑃 and (𝐺𝑃) ≠ 𝑃 from cdlemg28 34900. TODO: would it be better to do this later? (Contributed by NM, 29-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))    &   𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑧𝑁𝑧𝑂) ∧ 𝑧 (𝑃 𝑣) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Theoremcdlemg33a 34902* TODO: Fix comment. (Contributed by NM, 29-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))    &   𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑂𝐴) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝑄𝑁𝑂) ∧ 𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))

Theoremcdlemg33b 34903* TODO: Fix comment. (Contributed by NM, 30-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))    &   𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑂𝐴) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))

Theoremcdlemg33c 34904* TODO: Fix comment. (Contributed by NM, 30-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))    &   𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑂 = (0.‘𝐾)) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))

Theoremcdlemg33d 34905* TODO: Fix comment. (Contributed by NM, 30-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))    &   𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂𝐴) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))

Theoremcdlemg33e 34906* TODO: Fix comment. (Contributed by NM, 30-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))    &   𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝑁 = (0.‘𝐾) ∧ 𝑂 = (0.‘𝐾)) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))

Theoremcdlemg33 34907* Combine cdlemg33b 34903, cdlemg33c 34904, cdlemg33d 34905, cdlemg33e 34906. TODO: Fix comment. (Contributed by NM, 30-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))    &   𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑂𝑧 (𝑃 𝑣))))

Theoremcdlemg34 34908* Use cdlemg33 to eliminate 𝑧 from cdlemg29 34901. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))    &   𝑂 = ((𝑃 𝑣) (𝑄 (𝑅𝐺)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Theoremcdlemg35 34909* TODO: Fix comment. TODO: should we have a more general version of hlsupr 33580 to avoid the conditions? (Contributed by NM, 31-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))

Theoremcdlemg36 34910* Use cdlemg35 to eliminate 𝑣 from cdlemg34 34908. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Theoremcdlemg38 34911 Use cdlemg37 34885 to eliminate 𝑟𝐴 from cdlemg36 34910. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Theoremcdlemg39 34912 Eliminate conditions from cdlemg38 34911. TODO: Would this better be done at cdlemg35 34909? TODO: Fix comment. (Contributed by NM, 31-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Theoremcdlemg40 34913 Eliminate 𝑃𝑄 conditions from cdlemg39 34912. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Theoremcdlemg41 34914 Convert cdlemg40 34913 to function composition. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊) = ((𝑄 ((𝐹𝐺)‘𝑄)) 𝑊))

Theoremltrnco 34915 The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)

Theoremtrlcocnv 34916 Swap the arguments of the trace of a composition with converse. (Contributed by NM, 1-Jul-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))

Theoremtrlcoabs 34917 Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝐺)‘𝑃) (𝑅𝐹)) = ((𝐺𝑃) (𝑅𝐹)))

Theoremtrlcoabs2N 34918 Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))

Theoremtrlcoat 34919 The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013.)
𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)

Theoremtrlcocnvat 34920 Commonly used special case of trlcoat 34919. (Contributed by NM, 1-Jul-2013.)
𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)

Theoremtrlconid 34921 The composition of two different translations is not the identity translation. (Contributed by NM, 22-Jul-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹𝐺) ≠ ( I ↾ 𝐵))

Theoremtrlcolem 34922 Lemma for trlco 34923. (Contributed by NM, 1-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))

Theoremtrlco 34923 The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))

Theoremtrlcone 34924 If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))

Theoremcdlemg42 34925 Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃)))

Theoremcdlemg43 34926 Part of proof of Lemma G of [Crawley] p. 116, third line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹‘(𝐺𝑃)) = (((𝐺𝑃) (𝑅𝐹)) ((𝐹𝑃) (𝑅𝐺))))

Theoremcdlemg44a 34927 Part of proof of Lemma G of [Crawley] p. 116, fourth line of third paragraph on p. 117: "so fg(p) = gf(p)." (Contributed by NM, 3-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))

Theoremcdlemg44b 34928 Eliminate (𝐹𝑃) ≠ 𝑃, (𝐺𝑃) ≠ 𝑃 from cdlemg44a 34927. (Contributed by NM, 3-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))

Theoremcdlemg44 34929 Part of proof of Lemma G of [Crawley] p. 116, fifth line of third paragraph on p. 117: "and hence fg = gf." (Contributed by NM, 3-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹𝐺) = (𝐺𝐹))

Theoremcdlemg47a 34930 TODO: fix comment. TODO: Use this above in place of (𝐹𝑃) = 𝑃 antecedents? (Contributed by NM, 5-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = (𝐺𝐹))

Theoremcdlemg46 34931* Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))

Theoremcdlemg47 34932* Part of proof of Lemma G of [Crawley] p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))

Theoremcdlemg48 34933 Elmininate from cdlemg47 34932. (Contributed by NM, 5-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹𝐺) = (𝐺𝐹))

Theoremltrncom 34934 Composition is commutative for translations. Part of proof of Lemma G of [Crawley] p. 116. (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))

Theoremltrnco4 34935 Rearrange a composition of 4 translations, analogous to an4 860. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → ((𝐷𝐸) ∘ (𝐹𝐺)) = ((𝐷𝐹) ∘ (𝐸𝐺)))

Theoremtrljco 34936 Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.)
= (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐹) (𝑅𝐺)))

Theoremtrljco2 34937 Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013.)
= (join‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑅𝐹) (𝑅‘(𝐹𝐺))) = ((𝑅𝐺) (𝑅‘(𝐹𝐺))))

Syntaxctgrp 34938 Extend class notation with translation group.
class TGrp

Definitiondf-tgrp 34939* Define the class of all translation groups. 𝑘 is normally a member of HL. Each base set is the set of all lattice translations with respect to a hyperplane 𝑤, and the operation is function composition. Similar to definition of G in [Crawley] p. 116, third paragraph (which defines this for geomodular lattices). (Contributed by NM, 5-Jun-2013.)
TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩}))

Theoremtgrpfset 34940* The translation group maps for a lattice 𝐾. (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑉 → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))

Theoremtgrpset 34941* The translation group for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐺 = ((TGrp‘𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → 𝐺 = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})

Theoremtgrpbase 34942 The base set of the translation group is the set of all translations (for a fiducial co-atom 𝑊). (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐺 = ((TGrp‘𝐾)‘𝑊)    &   𝐶 = (Base‘𝐺)       ((𝐾𝑉𝑊𝐻) → 𝐶 = 𝑇)

Theoremtgrpopr 34943* The group operation of the translation group is function composition. (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐺 = ((TGrp‘𝐾)‘𝑊)    &    + = (+g𝐺)       ((𝐾𝑉𝑊𝐻) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))

Theoremtgrpov 34944 The group operation value of the translation group is the composition of translations. (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐺 = ((TGrp‘𝐾)‘𝑊)    &    + = (+g𝐺)       ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → (𝑋 + 𝑌) = (𝑋𝑌))

Theoremtgrpgrplem 34945 Lemma for tgrpgrp 34946. (Contributed by NM, 6-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐺 = ((TGrp‘𝐾)‘𝑊)    &    + = (+g𝐺)    &   𝐵 = (Base‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)

Theoremtgrpgrp 34946 The translation group is a group. (Contributed by NM, 6-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐺 = ((TGrp‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)

Theoremtgrpabl 34947 The translation group is an Abelian group. Lemma G of [Crawley] p. 116. (Contributed by NM, 6-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐺 = ((TGrp‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Abel)

Syntaxctendo 34948 Extend class notation with translation group endomorphisms.
class TEndo

Syntaxcedring 34949 Extend class notation with division ring on trace-preserving endomorphisms.
class EDRing

Syntaxcedring-rN 34950 Extend class notation with division ring on trace-preserving endomorphisms, with multiplication reversed. TODO: remove EDRingR theorems if not used.
class EDRingR

Definitiondf-tendo 34951* Define trace-preserving endomorphisms on the set of translations. (Contributed by NM, 8-Jun-2013.)
TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥𝑦)) = ((𝑓𝑥) ∘ (𝑓𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))}))

Definitiondf-edring-rN 34952* Define division ring on trace-preserving endomorphisms. Definition of E of [Crawley] p. 117, 4th line from bottom. (Contributed by NM, 8-Jun-2013.)
EDRingR = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡𝑠))⟩}))

Definitiondf-edring 34953* Define division ring on trace-preserving endomorphisms. The multiplication operation is reversed composition, per the definition of E of [Crawley] p. 117, 4th line from bottom. (Contributed by NM, 8-Jun-2013.)
EDRing = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑠𝑡))⟩}))

Theoremtendofset 34954* The set of all trace-preserving endomorphisms on the set of translations for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))

Theoremtendoset 34955* The set of trace-preserving endomorphisms on the set of translations for a fiducial co-atom 𝑊. (Contributed by NM, 8-Jun-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})

Theoremistendo 34956* The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))

Theoremtendotp 34957 Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑅‘(𝑆𝐹)) (𝑅𝐹))

Theoremistendod 34958* Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   (𝜑 → (𝐾𝑉𝑊𝐻))    &   (𝜑𝑆:𝑇𝑇)    &   ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))    &   ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))       (𝜑𝑆𝐸)

Theoremtendof 34959 Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:𝑇𝑇)

Theoremtendoeq1 34960* Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉)

Theoremtendovalco 34961 Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑉𝑊𝐻𝑆𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))

Theoremtendocoval 34962 Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))

Theoremtendocl 34963 Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)

Theoremtendoco2 34964 Distribution of compositions in preparation for endomorphism sum definition. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈‘(𝐹𝐺)) ∘ (𝑉‘(𝐹𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))

Theoremtendoidcl 34965 The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)

Theoremtendo1mul 34966 Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (( I ↾ 𝑇) ∘ 𝑈) = 𝑈)

Theoremtendo1mulr 34967 Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)

Theoremtendococl 34968 The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)

Theoremtendoid 34969 The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵))

Theoremtendoeq2 34970* Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 35020, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)

Theoremtendoplcbv 34971* Define sum operation for trace-perserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.)
𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))

Theoremtendopl 34972* Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))

Theoremtendopl2 34973* Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))

Theoremtendoplcl2 34974* Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇)

Theoremtendoplco2 34975* Value of result of endomorphism sum operation on a translation composition. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈𝑃𝑉)‘(𝐹𝐺)) = (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺)))

Theoremtendopltp 34976* Trace-preserving property of endomorphism sum operation 𝑃, based on theorem trlco 34923. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 34923) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our (TEndo‘𝐾)‘𝑊.) (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &    = (le‘𝐾)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))

Theoremtendoplcl 34977* Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)

Theoremtendoplcom 34978* The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈))

Theoremtendoplass 34979* The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉)))

Theoremtendodi1 34980* Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))

Theoremtendodi2 34981* Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆𝑉)𝑃(𝑈𝑉)))

Theoremtendo0cbv 34982* Define additive identity for trace-perserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.)
𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))

Theoremtendo02 34983* Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.)
𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝐵 = (Base‘𝐾)       (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))

Theoremtendo0co2 34984* The additive identity trace-perserving endormorphism preserves composition of translations. TODO: why isn't this a special case of tendospdi1 35217? (Contributed by NM, 11-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑂‘(𝐹𝐺)) = ((𝑂𝐹) ∘ (𝑂𝐺)))

Theoremtendo0tp 34985* Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &    = (le‘𝐾)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))

Theoremtendo0cl 34986* The additive identity is a trace-perserving endormorphism. (Contributed by NM, 12-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)

Theoremtendo0pl 34987* Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)

Theoremtendo0plr 34988* Property of the additive identity endormorphism. (Contributed by NM, 21-Feb-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃𝑂) = 𝑆)

Theoremtendoicbv 34989* Define inverse function for trace-perserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.)
𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))       𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))

Theoremtendoi 34990* Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))

Theoremtendoi2 34991* Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))

Theoremtendoicl 34992* Closure of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)

Theoremtendoipl 34993* Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝐵 = (Base‘𝐾)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)

Theoremtendoipl2 34994* Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝐵 = (Base‘𝐾)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = 𝑂)

Theoremerngfset 34995* The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑉 → (EDRing‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑠𝑡))⟩}))

Theoremerngset 34996* The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡))⟩})

Theoremerngbase 34997 The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom 𝑊). TODO: the .t hypothesis isn't used. (Also look at others.) (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   𝐶 = (Base‘𝐷)       ((𝐾𝑉𝑊𝐻) → 𝐶 = 𝐸)

Theoremerngfplus 34998* Ring addition operation. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       ((𝐾𝑉𝑊𝐻) → + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))

Theoremerngplus 34999* Ring addition operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))

Theoremerngplus2 35000 Ring addition operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42428
 Copyright terms: Public domain < Previous  Next >