HomeHome Metamath Proof Explorer
Theorem List (p. 356 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28623)
  Hilbert Space Explorer  Hilbert Space Explorer
(28624-30146)
  Users' Mathboxes  Users' Mathboxes
(30147-44804)
 

Theorem List for Metamath Proof Explorer - 35501-35600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminxp2 35501* Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.)
(𝑅 ∩ (𝐴 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦)}
 
Theoremopabf 35502 A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.)
¬ 𝜑       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅
 
Theoremec0 35503 The empty-coset of a class is the empty set. (Contributed by Peter Mazsa, 19-May-2019.)
[𝐴]∅ = ∅
 
Theorem0qs 35504 Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.)
(∅ / 𝑅) = ∅
 
20.22.3  Range Cartesian product
 
Definitiondf-xrn 35505 Define the range Cartesian product of two classes. Definition from [Holmes] p. 40. Membership in this class is characterized by xrnss3v 35506 and brxrn 35508. This is Scott Fenton's df-txp 33213 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 33213. (Contributed by Scott Fenton, 31-Mar-2012.)
(𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
 
Theoremxrnss3v 35506 A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 33237 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 33237. (Contributed by Scott Fenton, 31-Mar-2012.)
(𝐴𝐵) ⊆ (V × (V × V))
 
Theoremxrnrel 35507 A range Cartesian product is a relation. This is Scott Fenton's txprel 33238 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 33238. (Contributed by Scott Fenton, 31-Mar-2012.)
Rel (𝐴𝐵)
 
Theorembrxrn 35508 Characterize a ternary relation over a range Cartesian product. Together with xrnss3v 35506, this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝐴𝑅𝐵𝐴𝑆𝐶)))
 
Theorembrxrn2 35509* A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.)
(𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
 
Theoremdfxrn2 35510* Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.)
(𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ (𝑢𝑅𝑥𝑢𝑆𝑦)}
 
Theoremxrneq1 35511 Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremxrneq1i 35512 Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremxrneq1d 35513 Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremxrneq2 35514 Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremxrneq2i 35515 Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremxrneq2d 35516 Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremxrneq12 35517 Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
 
Theoremxrneq12i 35518 Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremxrneq12d 35519 Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 18-Dec-2021.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremelecxrn 35520* Elementhood in the (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
(𝐴𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
 
Theoremecxrn 35521* The (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
(𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
 
Theoremxrninxp 35522* Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.)
((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
 
Theoremxrninxp2 35523* Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 8-Apr-2020.)
((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
 
Theoremxrninxpex 35524 Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V)
 
Theoreminxpxrn 35525 Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.)
((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
 
Theorembr1cnvxrn2 35526* The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.)
(𝐵𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
 
Theoremelec1cnvxrn2 35527* Elementhood in the converse range Cartesian product coset of 𝐴. (Contributed by Peter Mazsa, 11-Jul-2021.)
(𝐵𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
 
Theoremrnxrn 35528* Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.)
ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
 
Theoremrnxrnres 35529* Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.)
ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
 
Theoremrnxrncnvepres 35530* Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.)
ran (𝑅 ⋉ ( E ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑦𝑢𝑢𝑅𝑥)}
 
Theoremrnxrnidres 35531* Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.)
ran (𝑅 ⋉ ( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥)}
 
Theoremxrnres 35532 Two ways to express restriction of range Cartesian product, see also xrnres2 35533, xrnres3 35534. (Contributed by Peter Mazsa, 5-Jun-2021.)
((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ 𝑆)
 
Theoremxrnres2 35533 Two ways to express restriction of range Cartesian product, see also xrnres 35532, xrnres3 35534. (Contributed by Peter Mazsa, 6-Sep-2021.)
((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
 
Theoremxrnres3 35534 Two ways to express restriction of range Cartesian product, see also xrnres 35532, xrnres2 35533. (Contributed by Peter Mazsa, 28-Mar-2020.)
((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
 
Theoremxrnres4 35535 Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.)
((𝑅𝑆) ↾ 𝐴) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
 
Theoremxrnresex 35536 Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.)
((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆𝐴)) ∈ V)
 
Theoremxrnidresex 35537 Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021.)
((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V)
 
Theoremxrncnvepresex 35538 Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.)
((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
 
Theorembrin2 35539 Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩))
 
Theorembrin3 35540 Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆){{𝐵}}))
 
20.22.4  Cosets by ` R `
 
Definitiondf-coss 35541* Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 35543 and the comment of dfec2 8282). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. ~? pet ). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 35544) or to the range of a range Cartesian product of classes (cf. dfcoss4 35545), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 35543. Technically, we can define it via composition (dfcoss3 35544) or as the range of a range Cartesian product (dfcoss4 35545), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 35796, df-funALTV 35797) and disjoints (dfdisjs 35823, dfdisjs2 35824, df-disjALTV 35820, dfdisjALTV2 35829) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
 
Definitiondf-coels 35542 Define the class of coelements on the class 𝐴, see also the alternate definition dfcoels 35557. Possible definitions are the special cases of dfcoss3 35544 and dfcoss4 35545. (Contributed by Peter Mazsa, 20-Nov-2019.)
𝐴 = ≀ ( E ↾ 𝐴)
 
Theoremdfcoss2 35543* Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8282). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)}
 
Theoremdfcoss3 35544 Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 35541). (Contributed by Peter Mazsa, 27-Dec-2018.)
𝑅 = (𝑅𝑅)
 
Theoremdfcoss4 35545 Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 35541). (Contributed by Peter Mazsa, 12-Jul-2021.)
𝑅 = ran (𝑅𝑅)
 
Theoremcossex 35546 If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.)
(𝐴𝑉 → ≀ 𝐴 ∈ V)
 
Theoremcosscnvex 35547 If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.)
(𝐴𝑉 → ≀ 𝐴 ∈ V)
 
Theorem1cosscnvepresex 35548 Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.)
(𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
 
Theorem1cossxrncnvepresex 35549 Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.)
((𝐴𝑉𝑅𝑊) → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
 
Theoremrelcoss 35550 Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.)
Rel ≀ 𝑅
 
Theoremrelcoels 35551 Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.)
Rel ∼ 𝐴
 
Theoremcossss 35552 Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.)
(𝐴𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵)
 
Theoremcosseq 35553 Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.)
(𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵)
 
Theoremcosseqi 35554 Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.)
𝐴 = 𝐵       𝐴 = ≀ 𝐵
 
Theoremcosseqd 35555 Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → ≀ 𝐴 = ≀ 𝐵)
 
Theorem1cossres 35556* The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.)
≀ (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑅𝑦)}
 
Theoremdfcoels 35557* Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
 
Theorembrcoss 35558* 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
 
Theorembrcoss2 35559* Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅)))
 
Theorembrcoss3 35560 Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
 
Theorembrcosscnvcoss 35561 For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theorembrcoels 35562* 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵𝐴𝐶 ↔ ∃𝑢𝐴 (𝐵𝑢𝐶𝑢)))
 
Theoremcocossss 35563* Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.)
( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
 
Theoremcnvcosseq 35564 The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.)
𝑅 = ≀ 𝑅
 
Theorembr2coss 35565 Cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))
 
Theorembr1cossres 35566* 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑅𝐶)))
 
Theorembr1cossres2 35567* 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅)))
 
Theoremrelbrcoss 35568* 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.)
((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
 
Theorembr1cossinres 35569* 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢𝑆𝐵𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶𝑢𝑅𝐶))))
 
Theorembr1cossxrnres 35570* 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
(((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (𝑆𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢𝑆𝐶𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸𝑢𝑅𝐷))))
 
Theorembr1cossinidres 35571* 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶))))
 
Theorembr1cossincnvepres 35572* 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶))))
 
Theorembr1cossxrnidres 35573* 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
(((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
 
Theorembr1cossxrncnvepres 35574* 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.)
(((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷))))
 
Theoremdmcoss3 35575 The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.)
dom ≀ 𝑅 = dom 𝑅
 
Theoremdmcoss2 35576 The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.)
dom ≀ 𝑅 = ran 𝑅
 
Theoremrncossdmcoss 35577 The range of cosets is the domain of them (this should be rncoss 5837 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.)
ran ≀ 𝑅 = dom ≀ 𝑅
 
Theoremdm1cosscnvepres 35578 The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.)
dom ≀ ( E ↾ 𝐴) = 𝐴
 
Theoremdmcoels 35579 The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
dom ∼ 𝐴 = 𝐴
 
Theoremeldmcoss 35580* Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.)
(𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
 
Theoremeldmcoss2 35581 Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.)
(𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅𝐴𝑅𝐴))
 
Theoremeldm1cossres 35582* Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.)
(𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑢𝑅𝐵))
 
Theoremeldm1cossres2 35583* Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.)
(𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅))
 
Theoremrefrelcosslem 35584 Lemma for the left side of the refrelcoss3 35585 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.)
𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
 
Theoremrefrelcoss3 35585* The class of cosets by 𝑅 is reflexive, see dfrefrel3 35638. (Contributed by Peter Mazsa, 30-Jul-2019.)
(∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
 
Theoremrefrelcoss2 35586 The class of cosets by 𝑅 is reflexive, see dfrefrel2 35637. (Contributed by Peter Mazsa, 30-Jul-2019.)
(( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
 
Theoremsymrelcoss3 35587 The class of cosets by 𝑅 is symmetric, see dfsymrel3 35668. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.)
(∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
 
Theoremsymrelcoss2 35588 The class of cosets by 𝑅 is symmetric, see dfsymrel2 35667. (Contributed by Peter Mazsa, 27-Dec-2018.)
(𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
 
Theoremcossssid 35589 Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.)
( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
 
Theoremcossssid2 35590* Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.)
( ≀ 𝑅 ⊆ I ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
 
Theoremcossssid3 35591* Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.)
( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
 
Theoremcossssid4 35592* Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.)
( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥)
 
Theoremcossssid5 35593* Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.)
( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
 
Theorembrcosscnv 35594* 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
 
Theorembrcosscnv2 35595 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
 
Theorembr1cosscnvxrn 35596 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵)))
 
Theorem1cosscnvxrn 35597 Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
(𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)
 
Theoremcosscnvssid3 35598* Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.)
( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣))
 
Theoremcosscnvssid4 35599* Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.)
( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
 
Theoremcosscnvssid5 35600* Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.)
(( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44804
  Copyright terms: Public domain < Previous  Next >