Home Metamath Proof ExplorerTheorem List (p. 357 of 424) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27745) Hilbert Space Explorer (27746-29270) Users' Mathboxes (29271-42316)

Theorem List for Metamath Proof Explorer - 35601-35700   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremcdleme46f2g1 35601 Conversion for 𝐺 to reuse 𝐹 theorems. TODO FIX COMMENT. (Contributed by NM, 1-Apr-2013.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝑃 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑄 𝑃) ∧ ¬ 𝑆 (𝑄 𝑃))))

Theoremcdleme17d2 35602* Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(p) respectively. We show, in their notation, fs(p)=q. TODO: FIX COMMENT. (Contributed by NM, 5-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐹𝑃) = 𝑄)

Theoremcdleme17d3 35603* TODO: FIX COMMENT. (Contributed by NM, 5-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝐹𝑃) = 𝑄)

Theoremcdleme17d4 35604* TODO: FIX COMMENT. (Contributed by NM, 11-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃 = 𝑄) → (𝐹𝑃) = 𝑄)

Theoremcdleme17d 35605* Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. We show, in their notation, fs(p)=q. TODO FIX COMMENT. (Contributed by NM, 11-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)

Theoremcdleme48fv 35606* Part of proof of Lemma D in [Crawley] p. 113. TODO: Can this replace uses of cdleme32a 35548? TODO: Can this be used to help prove the 𝑅 or 𝑆 case where 𝑋 is an atom? (Contributed by NM, 8-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) = ((𝐹𝑆) (𝑋 𝑊)))

Theoremcdleme48fvg 35607* Remove 𝑃𝑄 condition in cdleme48fv 35606. TODO: Can this replace uses of cdleme32a 35548? TODO: Can this be used to help prove the 𝑅 or 𝑆 case where 𝑋 is an atom? TODO: Can this be proved more directly by eliminating 𝑃𝑄 in earlier theorems? Should this replace uses of cdleme48fv 35606? (Contributed by NM, 23-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) = ((𝐹𝑆) (𝑋 𝑊)))

Theoremcdleme46fvaw 35608* Show that (𝐹𝑅) is an atom not under 𝑊 when 𝑅 is an atom not under 𝑊. (Contributed by NM, 18-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))

Theoremcdleme48bw 35609* TODO: fix comment. TODO: Remove unnecessary 𝑃𝑄 from cdleme48bw 35609 cdlemeg46c 35620 cdlemeg46fvaw 35623 cdlemeg46rgv 35635 cdlemeg46gfv 35637? cdleme48d 35642? and possibly others they affect. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ¬ (𝐹𝑋) 𝑊)

Theoremcdleme48b 35610* TODO: fix comment. (Contributed by NM, 8-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑋) 𝑊) = (𝑋 𝑊))

Theoremcdleme46frvlpq 35611* Show that (𝐹𝑆) is not under 𝑃 𝑄 when 𝑆 isn't. (Contributed by NM, 1-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ (𝐹𝑆) (𝑃 𝑄))

Theoremcdleme46fsvlpq 35612* Show that (𝐹𝑅) is under 𝑃 𝑄 when 𝑅 is. (Contributed by NM, 1-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝐹𝑅) (𝑃 𝑄))

Theoremcdlemeg46fvcl 35613* TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐺𝑋) ∈ 𝐵)

Theoremcdleme4gfv 35614* Part of proof of Lemma D in [Crawley] p. 113. TODO: Can this replace uses of cdleme32a 35548? TODO: Can this be used to help prove the 𝑅 or 𝑆 case where 𝑋 is an atom? TODO: Would an antecedent transformer like cdleme46f2g2 35600 help? (Contributed by NM, 8-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺𝑋) = ((𝐺𝑆) (𝑋 𝑊)))

Theoremcdlemeg47b 35615* TODO: FIX COMMENT. (Contributed by NM, 1-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐺𝑆) = 𝑆 / 𝑣𝑁)

Theoremcdlemeg47rv 35616* Value of gs(r) when r is an atom under pq and s is any atom not under pq, using very compact hypotheses. TODO: FIX COMMENT. (Contributed by NM, 3-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺𝑅) = 𝑅 / 𝑢𝑆 / 𝑣𝑂)

Theoremcdlemeg47rv2 35617* Value of gs(r) when r is an atom under pq and s is any atom not under pq, using very compact hypotheses. TODO: FIX COMMENT. (Contributed by NM, 1-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺𝑅) = ((𝑄 𝑃) ((𝐺𝑆) ((𝑅 𝑆) 𝑊))))

Theoremcdlemeg49le 35618* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝐺𝑋) (𝐺𝑌))

Theoremcdlemeg46bOLDN 35619* TODO FIX COMMENT. (Contributed by NM, 1-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐺𝑆) = 𝑆 / 𝑣𝑁)

Theoremcdlemeg46c 35620* TODO FIX COMMENT. (Contributed by NM, 1-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐹‘(𝐺𝑆)) = 𝑆 / 𝑣𝑁 / 𝑡𝐷)

Theoremcdlemeg46rvOLDN 35621* Value of gs(r) when r is an atom under pq and s is any atom not under pq, using very compact hypotheses. TODO FIX COMMENT. (Contributed by NM, 3-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺𝑅) = 𝑅 / 𝑢𝑆 / 𝑣𝑂)

Theoremcdlemeg46rv2OLDN 35622* Value of gs(r) when r is an atom under pq and s is any atom not under pq, using very compact hypotheses. TODO FIX COMMENT. (Contributed by NM, 3-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺𝑅) = ((𝑄 𝑃) ((𝐺𝑆) ((𝑅 𝑆) 𝑊))))

Theoremcdlemeg46fvaw 35623* Show that (𝐹𝑅) is an atom not under 𝑊 when 𝑅 is an atom not under 𝑊. (Contributed by NM, 1-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ((𝐺𝑅) ∈ 𝐴 ∧ ¬ (𝐺𝑅) 𝑊))

Theoremcdlemeg46nlpq 35624* Show that (𝐺𝑆) is not under 𝑃 𝑄 when 𝑆 isn't. (Contributed by NM, 3-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ (𝐺𝑆) (𝑃 𝑄))

Theoremcdlemeg46ngfr 35625* TODO FIX COMMENT g(f(s))=s p. 115 4th line from bottom. (Contributed by NM, 4-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝐺‘(𝐹𝑅)) = 𝑅)

Theoremcdlemeg46nfgr 35626* TODO FIX COMMENT f(g(s))=s p. 115 antepenultimate line. (Contributed by NM, 4-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝐹‘(𝐺𝑅)) = 𝑅)

Theoremcdlemeg46sfg 35627* TODO FIX COMMENT f(r) s = f(r) g(s) p. 116 2nd line TODO: eliminate eqcomd? (Contributed by NM, 4-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐹𝑅) 𝑆) = ((𝐹𝑅) (𝐹‘(𝐺𝑆))))

Theoremcdlemeg46fjgN 35628* NOT NEEDED? TODO FIX COMMENT. TODO eliminate eqcomd 2626? p. 116 2nd line. (Contributed by NM, 2-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐹𝑅) (𝐹‘(𝐺𝑆))) = (𝐹‘(𝑅 (𝐺𝑆))))

Theoremcdlemeg46rjgN 35629* NOT NEEDED? TODO FIX COMMENT. r g(s) = r v2 p. 115 last line. (Contributed by NM, 2-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 (𝐺𝑆)) = (𝑅 𝑌))

Theoremcdlemeg46fjv 35630* TODO FIX COMMENT f(r) f(g(s)) = f(r) v2 p. 116 2nd line. (Contributed by NM, 2-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐹𝑅) (𝐹‘(𝐺𝑆))) = ((𝐹𝑅) 𝑌))

Theoremcdlemeg46fsfv 35631* TODO FIX COMMENT f(r) s = f(r) v2 p. 116 2nd line. (Contributed by NM, 2-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐹𝑅) 𝑆) = ((𝐹𝑅) 𝑌))

Theoremcdlemeg46frv 35632* TODO FIX COMMENT. (f(r) v2) w = v2 p. 116 3rd line. (Contributed by NM, 2-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (((𝐹𝑅) 𝑌) 𝑊) = 𝑌)

Theoremcdlemeg46v1v2 35633* TODO FIX COMMENT v1 = v2 p. 116 3rd line. (Contributed by NM, 2-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)    &   𝑋 = (((𝐹𝑅) 𝑆) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑋 = 𝑌)

Theoremcdlemeg46vrg 35634* TODO FIX COMMENT v1 r g(s) p. 116 3rd line. (Contributed by NM, 3-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)    &   𝑋 = (((𝐹𝑅) 𝑆) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑋 (𝑅 (𝐺𝑆)))

Theoremcdlemeg46rgv 35635* TODO FIX COMMENT r g(s) v1 p. 116 3rd line. (Contributed by NM, 3-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)    &   𝑋 = (((𝐹𝑅) 𝑆) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 ((𝐺𝑆) 𝑋))

Theoremcdlemeg46req 35636* TODO FIX COMMENT r = (v1 g(s)) p. 116 3rd line. (Contributed by NM, 3-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)    &   𝑋 = (((𝐹𝑅) 𝑆) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 = ((𝑃 𝑄) ((𝐺𝑆) 𝑋)))

Theoremcdlemeg46gfv 35637* TODO FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1). (Contributed by NM, 4-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))    &   𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)    &   𝑋 = (((𝐹𝑅) 𝑆) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺‘(𝐹𝑅)) = ((𝑃 𝑄) ((𝐺𝑆) 𝑋)))

Theoremcdlemeg46gfr 35638* TODO FIX COMMENT p. 116 penultimate line: g(f(r)) = r. (Contributed by NM, 4-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺‘(𝐹𝑅)) = 𝑅)

Theoremcdlemeg46gfre 35639* TODO FIX COMMENT p. 116 penultimate line: g(f(r)) = r. (Contributed by NM, 4-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝐺‘(𝐹𝑅)) = 𝑅)

Theoremcdlemeg46gf 35640* TODO FIX COMMENT Eliminate antecedent 𝑅 (𝑃 𝑄). (Contributed by NM, 4-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐺‘(𝐹𝑅)) = 𝑅)

Theoremcdlemeg46fgN 35641* TODO FIX COMMENT p. 116 penultimate line: f(g(r)) = r. (Contributed by NM, 4-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐹‘(𝐺𝑅)) = 𝑅)

Theoremcdleme48d 35642* TODO: fix comment. (Contributed by NM, 8-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑋)) = 𝑋)

Theoremcdleme48gfv1 35643* TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐺‘(𝐹𝑋)) = 𝑋)

Theoremcdleme48gfv 35644* TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐺‘(𝐹𝑋)) = 𝑋)

Theoremcdleme48fgv 35645* TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐹‘(𝐺𝑋)) = 𝑋)

Theoremcdlemeg49lebilem 35646* Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Theoremcdleme50lebi 35647* Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Theoremcdleme50eq 35648* Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))

Theoremcdleme50f 35649* Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. TODO: can we use just 𝐹 Fn 𝐵 since range is computed in cdleme50rn 35652? (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵𝐵)

Theoremcdleme50f1 35650* Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1𝐵)

Theoremcdleme50rnlem 35651* Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. TODO: can we get rid of 𝐺 stuff if we show 𝐺 = 𝐹 earlier? (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ran 𝐹 = 𝐵)

Theoremcdleme50rn 35652* Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ran 𝐹 = 𝐵)

Theoremcdleme50f1o 35653* Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1-onto𝐵)

Theoremcdleme50laut 35654* Part of proof of Lemma D in [Crawley] p. 113. 𝐹 is a lattice automorphism. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝐼 = (LAut‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝐼)

Theoremcdleme50ldil 35655* Part of proof of Lemma D in [Crawley] p. 113. 𝐹 is a lattice dilation. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝐶 = ((LDil‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝐶)

Theoremcdleme50trn1 35656* Part of proof that 𝐹 is a translation. ¬ 𝑅 (𝑃 𝑄) case. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)

Theoremcdleme50trn2a 35657* Part of proof that 𝐹 is a translation. 𝑅 (𝑃 𝑄) case. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)

Theoremcdleme50trn2 35658* Part of proof that 𝐹 is a translation. Remove 𝑆 hypotheses no longer needed from cdleme50trn2a 35657. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)

Theoremcdleme50trn12 35659* Part of proof that 𝐹 is a translation. Combine 𝑅 (𝑃 𝑄) and ¬ 𝑅 (𝑃 𝑄) cases. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)

Theoremcdleme50trn3 35660* Part of proof that 𝐹 is a translation. 𝑃 = 𝑄 case. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)

Theoremcdleme50trn123 35661* Part of proof that 𝐹 is a translation. Combine all cases. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)

Theoremcdleme51finvfvN 35662* Part of proof of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐹𝑋) = (𝐺𝑋))

Theoremcdleme51finvN 35663* Part of proof of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑉 = ((𝑄 𝑃) 𝑊)    &   𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))    &   𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))    &   𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹 = 𝐺)

Theoremcdleme50ltrn 35664* Part of proof of Lemma E in [Crawley] p. 113. 𝐹 is a lattice translation. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)

Theoremcdleme51finvtrN 35665* Part of proof of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)

Theoremcdleme50ex 35666* Part of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 11-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃𝑓𝑇 (𝑓𝑃) = 𝑄)

Theoremcdleme 35667* Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)

Theoremcdlemf1 35668* Part of Lemma F in [Crawley] p. 116. TODO: should this or part of it become a stand-alone theorem? (Contributed by NM, 12-Apr-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))

Theoremcdlemf2 35669* Part of Lemma F in [Crawley] p. 116. (Contributed by NM, 12-Apr-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))

Theoremcdlemf 35670* Lemma F in [Crawley] p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)

Theoremcdlemfnid 35671* cdlemf 35670 with additional constraint of non-identity. (Contributed by NM, 20-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑈𝑓 ≠ ( I ↾ 𝐵)))

Theoremcdlemftr3 35672* Special case of cdlemf 35670 showing existence of non-identity translation with trace different from any 3 given lattice elements. (Contributed by NM, 24-Jul-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))

Theoremcdlemftr2 35673* Special case of cdlemf 35670 showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌))

Theoremcdlemftr1 35674* Part of proof of Lemma G of [Crawley] p. 116, sixth line of third paragraph on p. 117: there is "a translation h, different from the identity, such that tr h tr f." (Contributed by NM, 25-Jul-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑓) ≠ 𝑋))

Theoremcdlemftr0 35675* Special case of cdlemf 35670 showing existence of a non-identity translation. (Contributed by NM, 1-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 𝑓 ≠ ( I ↾ 𝐵))

Theoremtrlord 35676* The ordering of two Hilbert lattice elements (under the fiducial hyperplane 𝑊) is determined by the translations whose traces are under them. (Contributed by NM, 3-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))

Theoremcdlemg1a 35677* Shorter expression for 𝐺. TODO: fix comment. TODO: shorten using cdleme 35667 or vice-versa? Also, if not shortened with cdleme 35667, then it can be moved up to save repeating hypotheses. (Contributed by NM, 15-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺 = (𝑓𝑇 (𝑓𝑃) = 𝑄))

Theoremcdlemg1b2 35678* This theorem can be used to shorten 𝐺 = hypothesis. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹 = 𝐺)

Theoremcdlemg1idlemN 35679* Lemma for cdlemg1idN 35684. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) ∧ 𝑃 = 𝑄) → (𝐹𝑋) = 𝑋)

Theoremcdlemg1fvawlemN 35680* Lemma for ltrniotafvawN 35685. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))

Theoremcdlemg1ltrnlem 35681* Lemma for ltrniotacl 35686. (Contributed by NM, 18-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)

Theoremcdlemg1finvtrlemN 35682* Lemma for ltrniotacnvN 35687. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)

Theoremcdlemg1bOLDN 35683* This theorem can be used to shorten 𝐹 = hypothesis that have the form of the conclusion. TODO: fix comment. (Contributed by NM, 16-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥)))

Theoremcdlemg1idN 35684* Version of cdleme31id 35501 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐵 = (Base‘𝐾)       (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) ∧ 𝑃 = 𝑄) → (𝐹𝑋) = 𝑋)

TheoremltrniotafvawN 35685* Version of cdleme46fvaw 35608 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))

Theoremltrniotacl 35686* Version of cdleme50ltrn 35664 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 17-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)

TheoremltrniotacnvN 35687* Version of cdleme51finvtrN 35665 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)

Theoremltrniotaval 35688* Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)

Theoremltrniotacnvval 35689* Converse value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑄) = 𝑃)

TheoremltrniotaidvalN 35690* Value of the unique translation specified by identity value. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))

TheoremltrniotavalbN 35691* Value of the unique translation specified by a value. (Contributed by NM, 10-Mar-2014.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) = 𝑄𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)))

Theoremcdlemeiota 35692* A translation is uniquely determined by one of its values. (Contributed by NM, 18-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)))

Theoremcdlemg1ci2 35693* Any function of the form of the function constructed for cdleme 35667 is a translation. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)) → 𝐹𝑇)

Theoremcdlemg1cN 35694* Any translation belongs to the set of functions constructed for cdleme 35667. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) → (𝐹𝑇𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)))

Theoremcdlemg1cex 35695* Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 35670? (Contributed by NM, 17-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))

Theoremcdlemg2cN 35696* Any translation belongs to the set of functions constructed for cdleme 35667. TODO: Fix comment. (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) → (𝐹𝑇𝐹 = 𝐺))

Theoremcdlemg2dN 35697* This theorem can be used to shorten 𝐺 = hypothesis. TODO: Fix comment. (Contributed by NM, 21-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑄)) → 𝐹 = 𝐺)

Theoremcdlemg2cex 35698* Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 35670? (Contributed by NM, 22-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑈 = ((𝑝 𝑞) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))    &   𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))

Theoremcdlemg2ce 35699* Utility theorem to eliminate p,q when converting theorems with explicit f. TODO: fix comment. (Contributed by NM, 22-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑈 = ((𝑝 𝑞) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))    &   𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))    &   (𝐹 = 𝐺 → (𝜓𝜒))    &   ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) ∧ 𝜑) → 𝜒)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝜑) → 𝜓)

Theoremcdlemg2jlemOLDN 35700* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. f preserves join: f(r s) = f(r) s, p. 115 10th line from bottom. TODO: Combine with cdlemg2jOLDN 35705? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑈 = ((𝑝 𝑞) 𝑊)    &   𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))    &   𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))    &   𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → (𝐹‘(𝑃 𝑄)) = ((𝐹𝑃) (𝐹𝑄)))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174